Nonlinear Impulsive Systems: 2D Stability ...
Document type :
Article dans une revue scientifique
Title :
Nonlinear Impulsive Systems: 2D Stability Analysis Approach
Author(s) :
Ríos, Héctor [Auteur]
University of California [Santa Barbara] [UC Santa Barbara]
HETEL, Laurentiu [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
University of California [Santa Barbara] [UC Santa Barbara]
HETEL, Laurentiu [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Efimov, Denis [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Journal title :
Automatica
Pages :
32-40
Publisher :
Elsevier
Publication date :
2017-06
ISSN :
0005-1098
English keyword(s) :
Nonlinear impulsive systems
Stability
2D systems
Stability
2D systems
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
This paper contributes to the stability analysis for nonlinear impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. Different ...
Show more >This paper contributes to the stability analysis for nonlinear impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. Different types of stability notions for a class of nonlinear impulsive systems are studied using a vector Lyapunov function approach. The results are applied to analyze the stability of a class of Lipschitz nonlinear impulsive systems based on Linear Matrix Inequalities. Some numerical examples illustrate the feasibility of the proposed approach.Show less >
Show more >This paper contributes to the stability analysis for nonlinear impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. Different types of stability notions for a class of nonlinear impulsive systems are studied using a vector Lyapunov function approach. The results are applied to analyze the stability of a class of Lipschitz nonlinear impulsive systems based on Linear Matrix Inequalities. Some numerical examples illustrate the feasibility of the proposed approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- https://hal.inria.fr/hal-01437308/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01437308/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01437308/document
- Open access
- Access the document