• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Introducing FoxPersonTracks: A benchmark ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
DOI :
10.1109/CBMI.2015.7153630
Title :
Introducing FoxPersonTracks: A benchmark for person re-identification from TV broadcast shows
Author(s) :
Auguste, Rémi [Auteur]
FOX MIIRE [LIFL]
Tirilly, Pierre [Auteur] refId
FOX MIIRE [LIFL]
Martinet, Jean [Auteur]
FOX MIIRE [LIFL]
Conference title :
International Workshop on Content-Based Multimedia Indexing
City :
Prague
Country :
République tchèque
Start date of the conference :
2015-06-10
Publication date :
2015
HAL domain(s) :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Multimédia [cs.MM]
English abstract : [en]
This paper introduces a novel person track dataset dedicated to person re-identification. The dataset is built from a set of real life TV shows broadcasted from BFMTV and LCP TV french channels, provided during REPERE ...
Show more >
This paper introduces a novel person track dataset dedicated to person re-identification. The dataset is built from a set of real life TV shows broadcasted from BFMTV and LCP TV french channels, provided during REPERE challenge. It contains a total 4,604 persontracks (short video sequences featuring an individual with no background) from 266 persons. The dataset has been built from the REPERE dataset by following several automated processing and manual selection/filtering steps. It is meant to serve as a benchmark in person re-identification from images/videos. The dataset also provides re-identifications results using space-time histograms as a baseline, together with an evaluation tool in order to ease the comparison to other re-identification methods.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Reconnaissance de personnes dans des contenus audiovisuels
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01228679/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01228679/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017