• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

About the Lyapunov exponent of sampled-data ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
About the Lyapunov exponent of sampled-data systems with non-uniform sampling
Author(s) :
HETEL, Laurentiu [Auteur] refId
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Kruszewski, Alexandre [Auteur]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Richard, Jean-Pierre [Auteur]
Systèmes Non Linéaires et à Retards [SyNeR]
Algebra for Digital Identification and Estimation [ALIEN]
Conference title :
TDS'09, 8th IFAC Workshop on Time Delay Systems
City :
Sinaia
Country :
Roumanie
Start date of the conference :
2009-09-01
Publication date :
2009-09
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
In this paper we propose a method for evaluating the Lyapunov exponent of sampled-data systems with sampling jitter. We consider the case of systems in which the sampling interval is unknown, time-varying and bounded in a ...
Show more >
In this paper we propose a method for evaluating the Lyapunov exponent of sampled-data systems with sampling jitter. We consider the case of systems in which the sampling interval is unknown, time-varying and bounded in a given interval. In order to take into account the inter-sampling behaviour of the system, the problem is addressed from the continuous time point of view. The approach exploits the fact that the command is a piecewise constant signal and leads to less conservative stability conditions. Using geometrical arguments, a lower bound of the Lyapunov exponent can be expressed as a generalized eigenvalue problem. Numerical examples are given to illustrate the approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017