Nonsmooth convex optimization to estimate ...
Document type :
Article dans une revue scientifique
Title :
Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data
Author(s) :
Pascal, Barbara [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Abry, Patrice [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Pustelnik, Nelly [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Roux, Stéphane G. [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Gribonval, Rémi [Auteur]
Dynamic Networks : Temporal and Structural Capture Approach [DANTE]
Flandrin, Patrick [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Abry, Patrice [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Pustelnik, Nelly [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Roux, Stéphane G. [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Gribonval, Rémi [Auteur]
Dynamic Networks : Temporal and Structural Capture Approach [DANTE]
Flandrin, Patrick [Auteur]
Laboratoire de Physique de l'ENS Lyon [Phys-ENS]
Journal title :
IEEE Transactions on Signal Processing
Pages :
2859-2868
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2022-06-19
ISSN :
1053-587X
English keyword(s) :
IEEE Covid-19
reproduction number
space-time evolution
nonsmooth convex optimization
outlier robustness
reproduction number
space-time evolution
nonsmooth convex optimization
outlier robustness
HAL domain(s) :
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Sciences du Vivant [q-bio]/Santé publique et épidémiologie
Mathématiques [math]/Optimisation et contrôle [math.OC]
Statistiques [stat]/Applications [stat.AP]
Sciences du Vivant [q-bio]/Santé publique et épidémiologie
Mathématiques [math]/Optimisation et contrôle [math.OC]
Statistiques [stat]/Applications [stat.AP]
English abstract : [en]
Daily pandemic surveillance, often achieved through the estimation of the reproduction number, constitutes a critical challenge for national health authorities to design countermeasures. In an earlier work, we proposed to ...
Show more >Daily pandemic surveillance, often achieved through the estimation of the reproduction number, constitutes a critical challenge for national health authorities to design countermeasures. In an earlier work, we proposed to formulate the estimation of the reproduction number as an optimization problem, combining data-model fidelity and space-time regularity constraints, solved by nonsmooth convex proximal minimizations. Though promising, that first formulation significantly lacks robustness against the Covid-19 data low quality (irrelevant or missing counts, pseudo-seasonalities,.. .) stemming from the emergency and crisis context, which significantly impairs accurate pandemic evolution assessments. The present work aims to overcome these limitations by carefully crafting a functional permitting to estimate jointly, in a single step, the reproduction number and outliers defined to model low quality data. This functional also enforces epidemiology-driven regularity properties for the reproduction number estimates, while preserving convexity, thus permitting the design of efficient minimization algorithms, based on proximity operators that are derived analytically. The explicit convergence of the proposed algorithm is proven theoretically. Its relevance is quantified on real Covid-19 data, consisting of daily new infection counts for 200+ countries and for the 96 metropolitan France counties, publicly available at Johns Hopkins University and Santé-Publique-France. The procedure permits automated daily updates of these estimates, reported via animated and interactive maps. Open-source estimation procedures will be made publicly available.Show less >
Show more >Daily pandemic surveillance, often achieved through the estimation of the reproduction number, constitutes a critical challenge for national health authorities to design countermeasures. In an earlier work, we proposed to formulate the estimation of the reproduction number as an optimization problem, combining data-model fidelity and space-time regularity constraints, solved by nonsmooth convex proximal minimizations. Though promising, that first formulation significantly lacks robustness against the Covid-19 data low quality (irrelevant or missing counts, pseudo-seasonalities,.. .) stemming from the emergency and crisis context, which significantly impairs accurate pandemic evolution assessments. The present work aims to overcome these limitations by carefully crafting a functional permitting to estimate jointly, in a single step, the reproduction number and outliers defined to model low quality data. This functional also enforces epidemiology-driven regularity properties for the reproduction number estimates, while preserving convexity, thus permitting the design of efficient minimization algorithms, based on proximity operators that are derived analytically. The explicit convergence of the proposed algorithm is proven theoretically. Its relevance is quantified on real Covid-19 data, consisting of daily new infection counts for 200+ countries and for the 96 metropolitan France counties, publicly available at Johns Hopkins University and Santé-Publique-France. The procedure permits automated daily updates of these estimates, reported via animated and interactive maps. Open-source estimation procedures will be made publicly available.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03348154/document
- Open access
- Access the document
- http://arxiv.org/pdf/2109.09595
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03348154/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03348154/document
- Open access
- Access the document
- document
- Open access
- Access the document
- 21CovidOutlier.pdf
- Open access
- Access the document
- 2109.09595
- Open access
- Access the document