• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sampling modulation: An energy efficient ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1109/BioCAS.2016.7833803
Title :
Sampling modulation: An energy efficient novel feature extraction for biosignal processing
Author(s) :
Causo, M. [Auteur]
Benatti, S. [Auteur]
Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” [CISAS]
Frappé, Antoine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Cathelin, A. [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Farella, E. [Auteur]
Kaiser, Andreas [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Benini, L. [Auteur]
Institut für Automatik - ETH Zurich
Rabaey, J. [Auteur]
Conference title :
2016 IEEE Biomedical Circuits and Systems Conference (BioCAS)
City :
Shanghai
Country :
Chine
Start date of the conference :
2016-10-17
Journal title :
Proceedings of 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS)
Publisher :
IEEE
Publication date :
2016
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Extracting useful information from human bio potentials is an essential component of many wearable health applications. Yet the feature extraction itself can be computationally demanding, and may rapidly exhaust the meager ...
Show more >
Extracting useful information from human bio potentials is an essential component of many wearable health applications. Yet the feature extraction itself can be computationally demanding, and may rapidly exhaust the meager energy supply available to the sensor node. General-purpose time-frequency analysis techniques, such as the Discrete Wavelet Transform (DWT) are widely used, but are computationally demanding and may represent overkill. This work presents a feature extraction technique for biopotential time-frequency analysis, based on the modulation of finite sample differences. The technique is applied to EEG-based seizure detection (feeding a Support Vector Machine (SVM) classifier) and reaches the performance of a DWT implementation, while offering a gain of 5× in power efficiency and 41× in execution.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
Multiscale Thermal Management of Computing Systems
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017