23 - Multilayered Structures Based One ...
Document type :
Partie d'ouvrage
Title :
23 - Multilayered Structures Based One Dimensional Photonic Crystals for MEMS Applications
Author(s) :
Ghouila-Houri, Cécile [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Talbi, Abdelkrim [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
AKJOUJ, ABDELLATIF [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Boudouti, El Houssaine [Auteur]
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dobrzynski, Leonard [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Talbi, Abdelkrim [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
AKJOUJ, ABDELLATIF [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Boudouti, El Houssaine [Auteur]
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dobrzynski, Leonard [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Book title :
Photonics, Part Three: Photonic Materials
Publisher :
Elsevier
Publication date :
2021
ISBN :
978-0-12-819388-4
HAL domain(s) :
Sciences de l'ingénieur [physics]
Physique [physics]
Physique [physics]
English abstract : [en]
This chapter presents and discusses the modeling of multilayered structures based 1D photonic crystals for micro-electro-mechanical systems (MEMS) applications. We particularly report in this chapter a design for realizing ...
Show more >This chapter presents and discusses the modeling of multilayered structures based 1D photonic crystals for micro-electro-mechanical systems (MEMS) applications. We particularly report in this chapter a design for realizing a 1D photonic crystal cavity based on highly flexible thin elastomer that enables tuning its resonance frequency by applying pressure and mechanical or thermal stress. The design consists of a Solaris thin-film elastomer layer sandwiched between two Bragg reflectors composed of six bilayers (SiO2/Si3N4). In this chapter, we will present the modeling of Bragg reflectors and photonic cavity structures using COMSOL Multiphysics, with a comparison between two COMSOL modules, Ray Optics and Wave Optics. A numerical pressure sensor based on the principles above will be presented and numerically demonstrated a resonance peak shift of 3.7 nm/bar to the lower wavelengths. An experimental MEMS Bragg mirror will also be presented, along with a photonic cavity based temperature sensor that demonstrated a transmission peak shift of 3.5 nm/° C to the higher wavelengths.Show less >
Show more >This chapter presents and discusses the modeling of multilayered structures based 1D photonic crystals for micro-electro-mechanical systems (MEMS) applications. We particularly report in this chapter a design for realizing a 1D photonic crystal cavity based on highly flexible thin elastomer that enables tuning its resonance frequency by applying pressure and mechanical or thermal stress. The design consists of a Solaris thin-film elastomer layer sandwiched between two Bragg reflectors composed of six bilayers (SiO2/Si3N4). In this chapter, we will present the modeling of Bragg reflectors and photonic cavity structures using COMSOL Multiphysics, with a comparison between two COMSOL modules, Ray Optics and Wave Optics. A numerical pressure sensor based on the principles above will be presented and numerically demonstrated a resonance peak shift of 3.7 nm/bar to the lower wavelengths. An experimental MEMS Bragg mirror will also be presented, along with a photonic cavity based temperature sensor that demonstrated a transmission peak shift of 3.5 nm/° C to the higher wavelengths.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://doi.org/10.1016/b978-0-12-819388-4.00034-4
- Open access
- Access the document
- https://doi.org/10.1016/b978-0-12-819388-4.00034-4
- Open access
- Access the document
- https://doi.org/10.1016/b978-0-12-819388-4.00034-4
- Open access
- Access the document
- https://doi.org/10.1016/b978-0-12-819388-4.00034-4
- Open access
- Access the document
- https://doi.org/10.1016/b978-0-12-819388-4.00034-4
- Open access
- Access the document
- https://doi.org/10.1016/b978-0-12-819388-4.00034-4
- Open access
- Access the document
- b978-0-12-819388-4.00034-4
- Open access
- Access the document