Hydrotropic extraction of carnosic acid ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Hydrotropic extraction of carnosic acid from rosemary with short-chain alkyl polyethylene glycol ethers
Author(s) :
Mazaud, Agathe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Lebeuf, Raphael [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Laguerre, Mickael [Auteur]
Naturex SA [Avignon]
Nardello-Rataj, Véronique [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Lebeuf, Raphael [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Laguerre, Mickael [Auteur]
Naturex SA [Avignon]
Nardello-Rataj, Véronique [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Journal title :
ACS Sustainable Chemistry & Engineering
Abbreviated title :
ACS Sustain. Chem. Eng.
Volume number :
8
Pages :
15268-15277
Publication date :
2020-10-12
ISSN :
2168-0485
Keyword(s) :
rosemary
antioxidant
cloud point
alkyl polyethylene glycol ether
hydrotropic extraction
carnosic acid
antioxidant
cloud point
alkyl polyethylene glycol ether
hydrotropic extraction
carnosic acid
HAL domain(s) :
Chimie/Chimie organique
English abstract : [en]
Carnosic acid (CA) is a hydrophobic secondary metabolite and the main antioxidant of rosemary. Extractions of CA from whole leaves of rosemary have been performed with aqueous solutions of 12 short-chain alkyl polyethylene ...
Show more >Carnosic acid (CA) is a hydrophobic secondary metabolite and the main antioxidant of rosemary. Extractions of CA from whole leaves of rosemary have been performed with aqueous solutions of 12 short-chain alkyl polyethylene glycol ethers, abbreviated as CiEj with i = 4–8 and j = 1–4. Such compounds act as hydrotropes which are known to enhance the solubilization of hydrophobic molecules in water while avoiding the formation of liquid crystals like surfactants. The extractions are compared with those carried out with alcohols, sodium xylene sulfonate (SXS) which is an archetypical ionic hydrotrope, and longer CiEj (i = 10 or 12 and j = 4) which behave as true surfactants. C5E2 and C4E1 are the best candidates and provide 1.21 g/L CA in 21 h and 1.02 g/L in 8 h, respectively. They are more efficient than SXS and alcoholic aqueous solutions. Correlations between the chemical structure and activity have highlighted three requirements for better performances: (i) a small molecular volume Vm (<250 Å3), (ii) a log P above 1, and (iii) a linear alkyl chain rather than a branched one. Finally, kinetic study and optical microscopy observations of the leaves after extraction give insight into the mode of action of the C4Ej compared to ethanol.Show less >
Show more >Carnosic acid (CA) is a hydrophobic secondary metabolite and the main antioxidant of rosemary. Extractions of CA from whole leaves of rosemary have been performed with aqueous solutions of 12 short-chain alkyl polyethylene glycol ethers, abbreviated as CiEj with i = 4–8 and j = 1–4. Such compounds act as hydrotropes which are known to enhance the solubilization of hydrophobic molecules in water while avoiding the formation of liquid crystals like surfactants. The extractions are compared with those carried out with alcohols, sodium xylene sulfonate (SXS) which is an archetypical ionic hydrotrope, and longer CiEj (i = 10 or 12 and j = 4) which behave as true surfactants. C5E2 and C4E1 are the best candidates and provide 1.21 g/L CA in 21 h and 1.02 g/L in 8 h, respectively. They are more efficient than SXS and alcoholic aqueous solutions. Correlations between the chemical structure and activity have highlighted three requirements for better performances: (i) a small molecular volume Vm (<250 Å3), (ii) a log P above 1, and (iii) a linear alkyl chain rather than a branched one. Finally, kinetic study and optical microscopy observations of the leaves after extraction give insight into the mode of action of the C4Ej compared to ethanol.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Research team(s) :
Colloïdes catalyse oxydation (CÏSCO)
Submission date :
2022-03-02T07:15:04Z
2023-12-15T20:18:16Z
2023-12-15T20:20:14Z
2023-12-15T20:18:16Z
2023-12-15T20:20:14Z