• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

IO radical yields from iodide oxidation ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
IO radical yields from iodide oxidation by ozone on aqueous aerosol proxy surfaces
Author(s) :
Ammann, Markus [Orateur]
Laboratory of Environmental Chemistry [Villigen] [LUC]
Antoine, Roose [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Laboratory of Environmental Chemistry [Villigen] [LUC]
Finkenzeller, Henning [Auteur]
Department of Chemistry and Biochemistry [Boulder]
Réal, Florent [Auteur] refId
Physico-Chimie Moléculaire Théorique [PCMT]
Vallet, Valérie [Auteur] refId
Physico-Chimie Moléculaire Théorique [PCMT]
Toubin, Céline [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Gyrin, Severin [Auteur]
Laboratory of Environmental Chemistry [Villigen] [LUC]
Lezzi, Lucia [Auteur]
Laboratory of Environmental Chemistry [Villigen] [LUC]
Volkamer, Rainer [Auteur]
Department of Chemistry and Biochemistry [Boulder]
Conference title :
A Molecular Level Understanding of Atmospheric Aerosols (MUOAA 2022)
City :
Los Angeles
Country :
Etats-Unis d'Amérique
Start date of the conference :
2022-05-15
Publication date :
2022-05-15
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
English abstract : [en]
Recently, Koenig et al. [1] measured both gas phase iodine species and particulate iodine (iodate and iodide) in the lower stratosphere indicating that tropospheric multiphase redox reactions prevent poorly soluble gaseous ...
Show more >
Recently, Koenig et al. [1] measured both gas phase iodine species and particulate iodine (iodate and iodide) in the lower stratosphere indicating that tropospheric multiphase redox reactions prevent poorly soluble gaseous iodine species from removal by wet deposition leading to injections of inorganic iodine into the lower stratosphere. This may influence stratospheric ozone depletion both indirectly through activation of iodide (I-) to molecular halogens and directly through the aqueous phase reaction of ozone (O<sub>3</sub>) with iodide. Also in the troposphere, measurements indicate higher than expected iodide to iodate ratios in the aerosol phase [2], suggesting the reaction of O3 with I- to be part of iodine cycling throughout the troposphere. The reaction of O3 with iodide in the aqueous phase, leading to IO<sup>-</sup> and to I<sub>2</sub> through the secondary reaction of IO<sup>-</sup> with I<sup>-</sup> is rather well established and one of the main iodine source from oceans [3]. However, with respect to reaction in the aerosol phase, uncertainties exist with respect to the temperature dependence, effects of pH and ionic strength, and also the extent of a surface reaction pathway [4,5]. In addition, Sakamoto et al. [4] have suggested that from this reaction IO(g) may be released. The objectives of this work has been to determine the temperature dependence of the oxidation of iodide by ozone as well as to have a better understanding of the parameters that lead to IO radical and I<sub>2</sub> formation. We used a trough reactor [5] coupled to Cavity Enhanced – Differential Optical Absorption Spectroscopy (CE-DOAS) [6] to study the reactivity in dilute aqueous solution (273 – 291 K) and in concentrated ammonium sulfate solutions (255 – 291 K). Measurements at varying O<sub>3</sub> mixing ratios indicate a substantial surface reaction component, especially at lower temperature. The IO/I<sub>2</sub> ratio is in the range of 10<sup>-3</sup> – 10<sup>-2</sup>. IO formation seems to result predominantly from a surface process. The experiments are also compared with results from theory. <br><br><b>References</b><br>[1]T. K. Koenig et al., PNAS, 117, 4 (2020). <br>[2]Baker, A. R., and Yodle, C.: Atmos. Chem. Phys., 21, 13067-13076, 2021.<br>[3]L. J. Carpenter et al., Nat. Geosci., 6 (2013).<br>[4]Y. Sakamoto et al., J. Phys. Chem. A, 113, 27 (2009).<br>[5]C. Moreno et al., Phys. Chem. Chem. Phys., 22 (2020).<br>[6]L. Artiglia et al., Nat. Commun., 8 (2017).<br>[7]M. Wang et al., Atmos. Meas. Tech., 14, (2021).Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
ULNE
Physiques et Chimie de l'Environnement Atmosphérique
Collections :
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017