Gene Editing in Potato Using Technology
Document type :
Partie d'ouvrage
Title :
Gene Editing in Potato Using Technology
Author(s) :
Chauvin, Laura [Auteur]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Sevestre, François [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Miniaturisation pour la Synthèse, l’Analyse et la Protéomique - UAR 3290 [MSAP]
Lukan, Tjaša [Auteur]
Nogué, Fabien [Auteur]
Institut Jean-Pierre Bourgin [IJPB]
Gallois, Jean-Luc [Auteur]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Chauvin, Jean-Eric [Auteur]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Veillet, Florian [Auteur correspondant]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Sevestre, François [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF]
Miniaturisation pour la Synthèse, l’Analyse et la Protéomique - UAR 3290 [MSAP]
Lukan, Tjaša [Auteur]
Nogué, Fabien [Auteur]
Institut Jean-Pierre Bourgin [IJPB]
Gallois, Jean-Luc [Auteur]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Chauvin, Jean-Eric [Auteur]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Veillet, Florian [Auteur correspondant]
Institut de Génétique, Environnement et Protection des Plantes [IGEPP]
Book title :
Solanum tuberosum
Publisher :
Springer US
Publication place :
New York, NY
Publication date :
2021-08-27
English keyword(s) :
Agrobacterium tumefaciens
CRISPR-Cas9
Gene editing
HRM analysis
Plant regeneration
Potato
Protoplasts
Single-guide RNA.
CRISPR-Cas9
Gene editing
HRM analysis
Plant regeneration
Potato
Protoplasts
Single-guide RNA.
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Genome editing in the cultivated potato (Solanum tuberosum), a vegetatively propagated and highly heterozygous species, constitutes a promising trail to directly improve traits into elite cultivars. With the recent and ...
Show more >Genome editing in the cultivated potato (Solanum tuberosum), a vegetatively propagated and highly heterozygous species, constitutes a promising trail to directly improve traits into elite cultivars. With the recent and successful development of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system in eukaryotic cells, the plant science community has gained access to a powerful, inexpensive, and easy-to-use toolbox to target and inactivate/modify specific genes. The specificity and versatility of the CRISPR-Cas9 system rely on a variable 20 bp spacer sequence at the 5' end of a single-guide RNA (sgRNA), which directs the SpCas9 (Streptococcus pyogenes) nuclease to cut the target DNA at a precise locus with no or low off-target events. Using this system, we and other teams were able to knock out specific genes in potato through the error-prone non-homologous end-joining (NHEJ) DNA repair mechanism. In this chapter, we describe strategies to design and clone spacer sequences into CRISPR-SpCas9 plasmids. We show how these constructs can be used for Agrobacterium-mediated stable transformation or transient transfection of protoplasts, and we describe the optimization of these two delivery methods, as well as of the plant regeneration processes. Finally, the molecular screening and characterization of edited potato plants are also described, mainly relying on PCR-based methods such as high-resolution melt (HRM) analysis.Show less >
Show more >Genome editing in the cultivated potato (Solanum tuberosum), a vegetatively propagated and highly heterozygous species, constitutes a promising trail to directly improve traits into elite cultivars. With the recent and successful development of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system in eukaryotic cells, the plant science community has gained access to a powerful, inexpensive, and easy-to-use toolbox to target and inactivate/modify specific genes. The specificity and versatility of the CRISPR-Cas9 system rely on a variable 20 bp spacer sequence at the 5' end of a single-guide RNA (sgRNA), which directs the SpCas9 (Streptococcus pyogenes) nuclease to cut the target DNA at a precise locus with no or low off-target events. Using this system, we and other teams were able to knock out specific genes in potato through the error-prone non-homologous end-joining (NHEJ) DNA repair mechanism. In this chapter, we describe strategies to design and clone spacer sequences into CRISPR-SpCas9 plasmids. We show how these constructs can be used for Agrobacterium-mediated stable transformation or transient transfection of protoplasts, and we describe the optimization of these two delivery methods, as well as of the plant regeneration processes. Finally, the molecular screening and characterization of edited potato plants are also described, mainly relying on PCR-based methods such as high-resolution melt (HRM) analysis.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Source :