Environmental Effects with Frozen-Density ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Title :
Environmental Effects with Frozen-Density Embedding in the Real-Time Time-Dependent Dirac-Kohn-Sham framework
Author(s) :
De Santis, Matteo [Orateur]
Physico-Chimie Moléculaire Théorique [PCMT]
Vallet, Valérie [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Severo Pereira Gomes, Andre [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Belpassi, Leonardo [Auteur]
Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” [SCITEC]
Storchi, Loriano [Auteur]
Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” [SCITEC]
Physico-Chimie Moléculaire Théorique [PCMT]
Vallet, Valérie [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Severo Pereira Gomes, Andre [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Belpassi, Leonardo [Auteur]
Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” [SCITEC]
Storchi, Loriano [Auteur]
Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” [SCITEC]
Conference title :
REHE – 2020/2022 13th International Conference on Relativistic Effects in Heavy-Element Chemistry and Physics
City :
Assisi
Country :
Italie
Start date of the conference :
2022-09-26
Publication date :
2022-09-26
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
English abstract : [en]
Frozen Density Embedding (FDE)<sup>[1,2]</sup> represents a versatile embedding scheme which allows to model complex molecular systems by partitioning the total system into sub-units: the environmental effects onto a given ...
Show more >Frozen Density Embedding (FDE)<sup>[1,2]</sup> represents a versatile embedding scheme which allows to model complex molecular systems by partitioning the total system into sub-units: the environmental effects onto a given subsystem is described by accounting quantum mechanically for the surrounding subsystems through their electron density.<br>The accurate modeling of properties of matter when heavy elements are involved requires the inclusion of relativistic corrections. The Dirac-Kohn-Sham (DKS) method allows one to treat electron correlation and relativistic effects on the same footing.<br>The response of electrons in atoms and molecules to an applied external electro-magnetic field can be efficiently treated employing Time-Dependent Density Functional Theory (TDDFT) in the real-time domain (RT-TDDFT)<sup>[3]</sup>.<br>We extend the full 4-component relativistic RT-TDDKS<sup>[4]</sup> method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (RT-TDDKS-in-DFT FDE)<sup>[5]</sup>.<br>Moreover, we demonstrate that the implementation of rather complex numerical algorithms can be enormously facilitated by BERTHA’s python API (PyBERTHA) which, besides all the well-known Python advantages, eases the interoperability with other FDE implementations available through the PyADF framework.<br><b>References:</b>1. Wesolowski, T. A.; Warshel, A. Frozen density functional approach for ab initio calculations of solvated molecules. J. Chem. Phys. 1993, 97, 8050–8053. <br>2. Höfener, S.; Gomes, A. S. P.; Visscher, L. Molecular properties via a subsystem density functional theory formulation: a common framework for electronic embedding. J. Chem Phys, 2012, 136(4), 044104.<br>3. Lopata, K.; Govind, N. Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores. J. Chem. Theory Comput. 2011, 7, 1344–1355<br>4. De Santis, M.; Storchi, L.; Belpassi, L.; Quiney, H. M.; Tarantelli, F. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python. J. Chem. Theory Comput. 2020, 16, 2410–2429. <br>5. De Santis, M.; Sorbelli, D.; Vallet, V.; Gomes, A. S. P.; Storchi, L.; Belpassi, L. Frozen-Density Embedding for including environmental effects in the Dirac-Kohn-Sham theory: an implementation based on density fitting and prototyping techniques. https://doi.org/10.48550/arXiv.2205.05523Show less >
Show more >Frozen Density Embedding (FDE)<sup>[1,2]</sup> represents a versatile embedding scheme which allows to model complex molecular systems by partitioning the total system into sub-units: the environmental effects onto a given subsystem is described by accounting quantum mechanically for the surrounding subsystems through their electron density.<br>The accurate modeling of properties of matter when heavy elements are involved requires the inclusion of relativistic corrections. The Dirac-Kohn-Sham (DKS) method allows one to treat electron correlation and relativistic effects on the same footing.<br>The response of electrons in atoms and molecules to an applied external electro-magnetic field can be efficiently treated employing Time-Dependent Density Functional Theory (TDDFT) in the real-time domain (RT-TDDFT)<sup>[3]</sup>.<br>We extend the full 4-component relativistic RT-TDDKS<sup>[4]</sup> method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (RT-TDDKS-in-DFT FDE)<sup>[5]</sup>.<br>Moreover, we demonstrate that the implementation of rather complex numerical algorithms can be enormously facilitated by BERTHA’s python API (PyBERTHA) which, besides all the well-known Python advantages, eases the interoperability with other FDE implementations available through the PyADF framework.<br><b>References:</b>1. Wesolowski, T. A.; Warshel, A. Frozen density functional approach for ab initio calculations of solvated molecules. J. Chem. Phys. 1993, 97, 8050–8053. <br>2. Höfener, S.; Gomes, A. S. P.; Visscher, L. Molecular properties via a subsystem density functional theory formulation: a common framework for electronic embedding. J. Chem Phys, 2012, 136(4), 044104.<br>3. Lopata, K.; Govind, N. Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores. J. Chem. Theory Comput. 2011, 7, 1344–1355<br>4. De Santis, M.; Storchi, L.; Belpassi, L.; Quiney, H. M.; Tarantelli, F. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python. J. Chem. Theory Comput. 2020, 16, 2410–2429. <br>5. De Santis, M.; Sorbelli, D.; Vallet, V.; Gomes, A. S. P.; Storchi, L.; Belpassi, L. Frozen-Density Embedding for including environmental effects in the Dirac-Kohn-Sham theory: an implementation based on density fitting and prototyping techniques. https://doi.org/10.48550/arXiv.2205.05523Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Source :