Specializations of indecomposable polynomials
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Specializations of indecomposable polynomials
Author(s) :
Bodin, Arnaud [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Chèze, Guillaume [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Dèbes, Pierre [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Chèze, Guillaume [Auteur]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Dèbes, Pierre [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Manuscripta mathematica
Pages :
391-403
Publisher :
Springer Verlag
Publication date :
2012
ISSN :
0025-2611
English keyword(s) :
indecomposable polynomials
irreducible polynomials
irreducible polynomials
HAL domain(s) :
Mathématiques [math]/Algèbre commutative [math.AC]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Théorie des nombres [math.NT]
Mathématiques [math]/Anneaux et algèbres [math.RA]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Théorie des nombres [math.NT]
Mathématiques [math]/Anneaux et algèbres [math.RA]
English abstract : [en]
We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime $p$ for the reduction modulo $p$ of an indecomposable polynomial $P(x)\in ...
Show more >We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime $p$ for the reduction modulo $p$ of an indecomposable polynomial $P(x)\in \Zz[x]$ to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if $f(t_1,\ldots,t_r,x)$ is an indecomposable polynomial in several variables with coefficients in a field of characteristic $p=0$ or $p>\deg(f)$, then the one variable specialized polynomial $f(t_1^\ast+\alpha_1^\ast x,\ldots,t_r^\ast+\alpha_r^\ast x,x)$ is indecomposable for all $(t_1^\ast, \ldots, t_r^\ast, \alpha_1^\ast, \ldots,\alpha_r^\ast)\in \overline k^{2r}$ off a proper Zariski closed subset.Show less >
Show more >We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime $p$ for the reduction modulo $p$ of an indecomposable polynomial $P(x)\in \Zz[x]$ to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if $f(t_1,\ldots,t_r,x)$ is an indecomposable polynomial in several variables with coefficients in a field of characteristic $p=0$ or $p>\deg(f)$, then the one variable specialized polynomial $f(t_1^\ast+\alpha_1^\ast x,\ldots,t_r^\ast+\alpha_r^\ast x,x)$ is indecomposable for all $(t_1^\ast, \ldots, t_r^\ast, \alpha_1^\ast, \ldots,\alpha_r^\ast)\in \overline k^{2r}$ off a proper Zariski closed subset.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- specdec_web.pdf
- Open access
- Access the document
- 1103.1825
- Open access
- Access the document