A converse to the neo-classical inequality ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
A converse to the neo-classical inequality with an application to the Mittag-Leffler function
Auteur(s) :
Gerhold, Stefan [Auteur]
Vienna University of Technology = Technische Universität Wien [TU Wien]
Simon, Thomas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Vienna University of Technology = Technische Universität Wien [TU Wien]
Simon, Thomas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Monatshefte für Mathematik
Pagination :
627-645
Éditeur :
Springer Verlag [1948-....]
Date de publication :
2023-01-14
ISSN :
0026-9255
Mot(s)-clé(s) en anglais :
Mittag-Leffler function
Log-convexity
Stable subordinator
Binomial coefficient
Log-convexity
Stable subordinator
Binomial coefficient
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We prove two inequalities for the Mittag-Leffler function, namely that the function $\log E_\alpha (x^\alpha )$ is sub-additive for $0<\alpha <1,$ and super-additive for $\alpha >1.$ These assertions follow from two new ...
Lire la suite >We prove two inequalities for the Mittag-Leffler function, namely that the function $\log E_\alpha (x^\alpha )$ is sub-additive for $0<\alpha <1,$ and super-additive for $\alpha >1.$ These assertions follow from two new binomial inequalities, one of which is a converse to the neo-classical inequality. The proofs use a generalization of the binomial theorem due to Hara and Hino (Bull London Math Soc 2010). For $0<\alpha <2,$ we also show that $E_\alpha (x^\alpha )$ is log-concave resp. log-convex, using analytic as well as probabilistic arguments.Lire moins >
Lire la suite >We prove two inequalities for the Mittag-Leffler function, namely that the function $\log E_\alpha (x^\alpha )$ is sub-additive for $0<\alpha <1,$ and super-additive for $\alpha >1.$ These assertions follow from two new binomial inequalities, one of which is a converse to the neo-classical inequality. The proofs use a generalization of the binomial theorem due to Hara and Hino (Bull London Math Soc 2010). For $0<\alpha <2,$ we also show that $E_\alpha (x^\alpha )$ is log-concave resp. log-convex, using analytic as well as probabilistic arguments.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 2111.02747
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- s00605-022-01817-8.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- s00605-022-01817-8.pdf
- Accès libre
- Accéder au document