Logarithmic Gross-Pitaevskii equation
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Logarithmic Gross-Pitaevskii equation
Auteur(s) :
Carles, Rémi [Auteur]
Institut de Recherche Mathématique de Rennes [IRMAR]
Ferriere, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Institut de Recherche Mathématique Avancée [IRMA]
Institut de Recherche Mathématique de Rennes [IRMAR]
Ferriere, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Institut de Recherche Mathématique Avancée [IRMA]
Titre de la revue :
Communications in Partial Differential Equations
Pagination :
88-120
Éditeur :
Taylor & Francis
Date de publication :
2024-02-06
ISSN :
0360-5302
Mot(s)-clé(s) en anglais :
Gross-Pitaevskii
logarithmic nonlinearity
Cauchy problem
solitary wave
traveling wave
logarithmic nonlinearity
Cauchy problem
solitary wave
traveling wave
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, which turns out to correspond ...
Lire la suite >We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, which turns out to correspond to the energy space for the standard Gross-Pitaevskii equation with a cubic nonlinearity, in small dimensions. We then characterize the solitary and travelling waves in the one dimensional case.Lire moins >
Lire la suite >We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, which turns out to correspond to the energy space for the standard Gross-Pitaevskii equation with a cubic nonlinearity, in small dimensions. We then characterize the solitary and travelling waves in the one dimensional case.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Commentaire :
31 pages. Accepted in Communications in Partial Differential Equations and published online on 29 Dec 2023.
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document
- 2209.14621
- Accès libre
- Accéder au document