Constraining global aerosol emissions using ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Constraining global aerosol emissions using polder/parasol satellite remote sensing observations
Auteur(s) :
Chen, Cheng [Auteur]
Université de Lille
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Doubovik, Oleg [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Henze, Daven K. [Auteur]
Department of Mechanical Engineering [Boulder]
Chin, Mian [Auteur]
NASA Goddard Space Flight Center [GSFC]
Lapyonok, Tatyana [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Schuster, Gregory L. [Auteur]
NASA Langley Research Center [Hampton] [LaRC]
Ducos, Fabrice [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Fuertes, David [Auteur]
Université de Lille
Litvinov, Pavel [Auteur]
Université de Lille
Li, Lei [Auteur]
Chinese Academy of Meteorological Sciences [CAMS]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Lopatin, Anton [Auteur]
Université de Lille
Hu, Qiaoyun [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Torres, Benjamin [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Université de Lille
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Doubovik, Oleg [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Henze, Daven K. [Auteur]
Department of Mechanical Engineering [Boulder]
Chin, Mian [Auteur]
NASA Goddard Space Flight Center [GSFC]
Lapyonok, Tatyana [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Schuster, Gregory L. [Auteur]
NASA Langley Research Center [Hampton] [LaRC]
Ducos, Fabrice [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Fuertes, David [Auteur]
Université de Lille
Litvinov, Pavel [Auteur]
Université de Lille
Li, Lei [Auteur]
Chinese Academy of Meteorological Sciences [CAMS]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Lopatin, Anton [Auteur]
Université de Lille
Hu, Qiaoyun [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Torres, Benjamin [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Titre de la revue :
Atmospheric Chemistry and Physics Discussions
Nom court de la revue :
Atmos. Chem. Phys.
Numéro :
19
Date de publication :
2019-12-03
ISSN :
1680-7316
Discipline(s) HAL :
Physique [physics]
Résumé en anglais : [en]
We invert global black carbon (BC), organic carbon (OC) and desert dust (DD) aerosol emissions from POLDER/PARASOL spectral aerosol optical depth (AOD) and aerosol absorption optical depth (AAOD) using the GEOS-Chem inverse ...
Lire la suite >We invert global black carbon (BC), organic carbon (OC) and desert dust (DD) aerosol emissions from POLDER/PARASOL spectral aerosol optical depth (AOD) and aerosol absorption optical depth (AAOD) using the GEOS-Chem inverse modeling framework. Our inverse modeling framework uses standard a priori emissions to provide a posteriori emissions that are constrained by POLDER/PARASOL AODs and AAODs. The following global emission values were retrieved for the three aerosol components: 18.4 Tg yr −1 for BC, 109.9 Tg yr −1 for OC and 731.6 Tg yr −1 for DD for the year 2010. These values show a difference of +166.7 %, +184.0 % and −42.4 %, respectively , with respect to the a priori values of emission inventories used in "standard" GEOS-Chem runs. The model simulations using a posteriori emissions (i.e., retrieved emissions) provide values of 0.119 for global mean AOD and 0.0071 for AAOD at 550 nm, which are +13.3 % and +82.1 %, respectively , higher than the AOD and AAOD obtained using the a priori values of emissions. Additionally, the a pos-teriori model simulation of AOD, AAOD, single scattering albedo, Ångström exponent and absorption Ångström exponent show better agreement with independent AERONET, MODIS and OMI measurements than the a priori simulation. Thus, this study suggests that using satellite-constrained global aerosol emissions in aerosol transport models can improve the accuracy of simulated global aerosol properties.Lire moins >
Lire la suite >We invert global black carbon (BC), organic carbon (OC) and desert dust (DD) aerosol emissions from POLDER/PARASOL spectral aerosol optical depth (AOD) and aerosol absorption optical depth (AAOD) using the GEOS-Chem inverse modeling framework. Our inverse modeling framework uses standard a priori emissions to provide a posteriori emissions that are constrained by POLDER/PARASOL AODs and AAODs. The following global emission values were retrieved for the three aerosol components: 18.4 Tg yr −1 for BC, 109.9 Tg yr −1 for OC and 731.6 Tg yr −1 for DD for the year 2010. These values show a difference of +166.7 %, +184.0 % and −42.4 %, respectively , with respect to the a priori values of emission inventories used in "standard" GEOS-Chem runs. The model simulations using a posteriori emissions (i.e., retrieved emissions) provide values of 0.119 for global mean AOD and 0.0071 for AAOD at 550 nm, which are +13.3 % and +82.1 %, respectively , higher than the AOD and AAOD obtained using the a priori values of emissions. Additionally, the a pos-teriori model simulation of AOD, AAOD, single scattering albedo, Ångström exponent and absorption Ångström exponent show better agreement with independent AERONET, MODIS and OMI measurements than the a priori simulation. Thus, this study suggests that using satellite-constrained global aerosol emissions in aerosol transport models can improve the accuracy of simulated global aerosol properties.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Université de Lille
Université de Lille
Collections :
Date de dépôt :
2024-01-30T11:45:41Z
2024-02-19T15:47:24Z
2024-02-19T15:47:24Z
Fichiers
- acp-19-14585-2019.pdf
- Non spécifié
- Accès libre
- Accéder au document