Effect of Size on the Luminescent Efficiency ...
Type de document :
Article dans une revue scientifique
DOI :
URL permanente :
Titre :
Effect of Size on the Luminescent Efficiency of Perovskite Nanocrystals
Auteur(s) :
Griffiths, J. T. [Auteur]
University of Cambridge [UK] [CAM]
Rocca Rivarola, F. Wisnivesky [Auteur]
University of Cambridge [UK] [CAM]
Davis, N. J. L. K. [Auteur]
Victoria University of Wellington
Ahumada-Lazo, R. [Auteur]
University of Manchester [Manchester]
Alanis, J. A. [Auteur]
University of Manchester [Manchester]
Parkinson, P. [Auteur]
University of Manchester [Manchester]
Binks, D. J. [Auteur]
University of Manchester [Manchester]
Fu, W. Y. [Auteur]
The University of Hong Kong [HKU]
de la Peña, Francisco [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Price, M. B. [Auteur]
Victoria University of Wellington
Howkins, A. [Auteur]
Brunel University London [Uxbridge]
Boyd, I. [Auteur]
Brunel University London [Uxbridge]
Humphreys, C. J. [Auteur]
University of Cambridge [UK] [CAM]
Greenham, N. C. [Auteur]
University of Cambridge [UK] [CAM]
Ducati, C. [Auteur]
University of Cambridge [UK] [CAM]
University of Cambridge [UK] [CAM]
Rocca Rivarola, F. Wisnivesky [Auteur]
University of Cambridge [UK] [CAM]
Davis, N. J. L. K. [Auteur]
Victoria University of Wellington
Ahumada-Lazo, R. [Auteur]
University of Manchester [Manchester]
Alanis, J. A. [Auteur]
University of Manchester [Manchester]
Parkinson, P. [Auteur]
University of Manchester [Manchester]
Binks, D. J. [Auteur]
University of Manchester [Manchester]
Fu, W. Y. [Auteur]
The University of Hong Kong [HKU]
de la Peña, Francisco [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Price, M. B. [Auteur]
Victoria University of Wellington
Howkins, A. [Auteur]
Brunel University London [Uxbridge]
Boyd, I. [Auteur]
Brunel University London [Uxbridge]
Humphreys, C. J. [Auteur]
University of Cambridge [UK] [CAM]
Greenham, N. C. [Auteur]
University of Cambridge [UK] [CAM]
Ducati, C. [Auteur]
University of Cambridge [UK] [CAM]
Titre de la revue :
ACS Applied Energy Materials
Nom court de la revue :
ACS Appl. Energy Mater.
Numéro :
2
Pagination :
6998-7004
Éditeur :
American Chemical Society (ACS)
Date de publication :
2019-10-07
ISSN :
2574-0962
Mot(s)-clé(s) en anglais :
nano-cathodoluminescence (nanoCL)
single crystal
inorganic perovskite
luminescence
scanning transmission electron microscopy (STEM)
photoluminescence (PL)
single crystal
inorganic perovskite
luminescence
scanning transmission electron microscopy (STEM)
photoluminescence (PL)
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
Perovskite colloidal nanocrystals have emerged as important new optical materials, with tunable light emission across the visible spectrum, narrow line widths for high color purity, and quantum efficiencies approaching ...
Lire la suite >Perovskite colloidal nanocrystals have emerged as important new optical materials, with tunable light emission across the visible spectrum, narrow line widths for high color purity, and quantum efficiencies approaching unity. These materials can be solution processed in large volumes at low cost making them promising for optoelectronic devices. The structure of nanocrystals influences the radiative and nonradiative recombination of carriers within them through trap states and Auger recombination. To optimize the emission properties it is vital to understand the relationship between the optical emission of individual nanocrystals and their structure, size, and composition. Here, we use nano-cathodoluminescence to relate the nanoscale optical emission of individual inorganic perovskite nanocrystals to their size. This approach reveals that larger nanocrystals exhibit brighter luminescence, indicating lower nonradiative losses compared to smaller nanocrystals. We also show nanoscale color mixing with bright red and blue emission from individual CsPbI3 and CsPbCl3 nanocrystals, respectively, in mixed films. The optical and structural characterizations serve as a powerful approach to the study of colloidal semiconductor nanocrystals that improves the fundamental understanding of quantum structures leading to improved optoelectronic devices.Lire moins >
Lire la suite >Perovskite colloidal nanocrystals have emerged as important new optical materials, with tunable light emission across the visible spectrum, narrow line widths for high color purity, and quantum efficiencies approaching unity. These materials can be solution processed in large volumes at low cost making them promising for optoelectronic devices. The structure of nanocrystals influences the radiative and nonradiative recombination of carriers within them through trap states and Auger recombination. To optimize the emission properties it is vital to understand the relationship between the optical emission of individual nanocrystals and their structure, size, and composition. Here, we use nano-cathodoluminescence to relate the nanoscale optical emission of individual inorganic perovskite nanocrystals to their size. This approach reveals that larger nanocrystals exhibit brighter luminescence, indicating lower nonradiative losses compared to smaller nanocrystals. We also show nanoscale color mixing with bright red and blue emission from individual CsPbI3 and CsPbCl3 nanocrystals, respectively, in mixed films. The optical and structural characterizations serve as a powerful approach to the study of colloidal semiconductor nanocrystals that improves the fundamental understanding of quantum structures leading to improved optoelectronic devices.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2024-02-01T09:35:11Z
2024-02-02T10:00:00Z
2024-02-02T10:00:00Z