Metastable liquid immiscibility in the ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Metastable liquid immiscibility in the 2018–2021 Fani Maoré lavas as a mechanism for volcanic nanolite formation
Author(s) :
Thivet, Simon [Auteur]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Pereira, Luiz [Auteur]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Menguy, Nicolas [Auteur]
Muséum national d'Histoire naturelle [MNHN]
Médard, Etienne [Auteur]
Laboratoire Magmas et Volcans [LMV]
Verdurme, Pauline [Auteur]
Laboratoire Magmas et Volcans [LMV]
Berthod, Carole [Auteur]
Institut de Physique du Globe de Paris [IPG Paris]
Troadec, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Hess, Kai-Uwe [Auteur]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Dingwell, Donald [Auteur]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Komorowski, Jean-Christophe [Auteur]
Institut de Physique du Globe de Paris [IPG Paris]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Pereira, Luiz [Auteur]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Menguy, Nicolas [Auteur]
Muséum national d'Histoire naturelle [MNHN]
Médard, Etienne [Auteur]
Laboratoire Magmas et Volcans [LMV]
Verdurme, Pauline [Auteur]
Laboratoire Magmas et Volcans [LMV]
Berthod, Carole [Auteur]
Institut de Physique du Globe de Paris [IPG Paris]
Troadec, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Hess, Kai-Uwe [Auteur]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Dingwell, Donald [Auteur]
Ludwig Maximilian University [Munich] = Ludwig Maximilians Universität München [LMU]
Komorowski, Jean-Christophe [Auteur]
Institut de Physique du Globe de Paris [IPG Paris]
Journal title :
Communications Earth & Environment
Pages :
483
Publisher :
Springer Nature
Publication date :
2023-12-16
ISSN :
2662-4435
English keyword(s) :
Mineralogy
Natural hazards
Petrology
Volcanology
Natural hazards
Petrology
Volcanology
HAL domain(s) :
Planète et Univers [physics]
English abstract : [en]
Nanoscale liquid immiscibility is observed in the 2018-2021 Fani Maoré submarine lavas (Comoros archipelago). Heat transfer calculations, Raman spectroscopy, scanning and transmission electron microscopy reveal that in ...
Show more >Nanoscale liquid immiscibility is observed in the 2018-2021 Fani Maoré submarine lavas (Comoros archipelago). Heat transfer calculations, Raman spectroscopy, scanning and transmission electron microscopy reveal that in contrast to thin (500 µm) outer rims of homogeneous glassy lava (rapidly quenched upon eruption, >1000 °C s-1), widespread liquid immiscibility is observed in thick (1 cm) inner lava rims (moderately quenched, 1-1000 °C s-1), which exhibit a nanoscale coexistence of Si-and Al-rich vs. CaFe Fe-, and Ti-rich melt phases. In this zone, rapid nanolite crystallization contrasts with the classical crystallization process inferred for the slower cooled (< 1 °C s-1) lava interiors. The occurrence of such metastable liquid immiscibility at eruptive conditions controls physicochemical characteristics of nanolites and residual melt compositions. This mechanism represents a common yet frequently unobserved feature in volcanic products, with the potential for major impacts on syn-eruptive magma degassing and rheology, and thus on eruptive dynamics.Show less >
Show more >Nanoscale liquid immiscibility is observed in the 2018-2021 Fani Maoré submarine lavas (Comoros archipelago). Heat transfer calculations, Raman spectroscopy, scanning and transmission electron microscopy reveal that in contrast to thin (500 µm) outer rims of homogeneous glassy lava (rapidly quenched upon eruption, >1000 °C s-1), widespread liquid immiscibility is observed in thick (1 cm) inner lava rims (moderately quenched, 1-1000 °C s-1), which exhibit a nanoscale coexistence of Si-and Al-rich vs. CaFe Fe-, and Ti-rich melt phases. In this zone, rapid nanolite crystallization contrasts with the classical crystallization process inferred for the slower cooled (< 1 °C s-1) lava interiors. The occurrence of such metastable liquid immiscibility at eruptive conditions controls physicochemical characteristics of nanolites and residual melt compositions. This mechanism represents a common yet frequently unobserved feature in volcanic products, with the potential for major impacts on syn-eruptive magma degassing and rheology, and thus on eruptive dynamics.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Source :
Files
- document
- Open access
- Access the document
- s43247-023-01158-w.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- s43247-023-01158-w.pdf
- Open access
- Access the document