Effects of two melt extrusion based additive ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
PMID :
Permalink :
Title :
Effects of two melt extrusion based additive manufacturing technologies and common sterilization methods on the properties of a medical grade plga copolymer
Author(s) :
Gradwohl, Marion [Auteur]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Chai, Feng [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Payen, Julien [Auteur]
Guerreschi, Pierre [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Marchetti, Philippe [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Blanchemain, Nicolas [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Chai, Feng [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Payen, Julien [Auteur]
Guerreschi, Pierre [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Marchetti, Philippe [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Blanchemain, Nicolas [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Journal title :
Polymers
Pages :
572
Publisher :
MDPI
Publication date :
2021
ISSN :
2073-4360
Keyword(s) :
sterilization
medical devices
polymer
bioabsorbable
additive manufacturing
medical devices
polymer
bioabsorbable
additive manufacturing
HAL domain(s) :
Sciences du Vivant [q-bio]/Ingénierie biomédicale/Biomatériaux
Chimie/Polymères
Sciences de l'ingénieur [physics]/Génie des procédés
Chimie/Polymères
Sciences de l'ingénieur [physics]/Génie des procédés
English abstract : [en]
Although bioabsorbable polymers have garnered increasing attention because of their potential in tissue engineering applications, to our knowledge there are only a few bioabsorbable 3D printed medical devices on the market ...
Show more >Although bioabsorbable polymers have garnered increasing attention because of their potential in tissue engineering applications, to our knowledge there are only a few bioabsorbable 3D printed medical devices on the market thus far. In this study, we assessed the processability of medical grade Poly(lactic-co-glycolic) Acid (PLGA)85:15 via two additive manufacturing technologies: Fused Filament Fabrication (FFF) and Direct Pellet Printing (DPP) to highlight the least destructive technology towards PLGA. To quantify PLGA degradation, its molecular weight (gel permeation chromatography (GPC)) as well as its thermal properties (differential scanning calorimetry (DSC)) were evaluated at each processing step, including sterilization with conventional methods (ethylene oxide, gamma, and beta irradiation). Results show that 3D printing of PLGA on a DPP printer significantly decreased the number-average molecular weight (Mn) to the greatest extent (26% Mn loss, p < 0.0001) as it applies a longer residence time and higher shear stress compared to classic FFF (19% Mn loss, p < 0.0001). Among all sterilization methods tested, ethylene oxide seems to be the most appropriate, as it leads to no significant changes in PLGA properties. After sterilization, all samples were considered to be non-toxic, as cell viability was above 70% compared to the control, indicating that this manufacturing route could be used for the development of bioabsorbable medical devices. Based on our observations, we recommend using FFF printing and ethylene oxide sterilization to produce PLGA medical devices.Show less >
Show more >Although bioabsorbable polymers have garnered increasing attention because of their potential in tissue engineering applications, to our knowledge there are only a few bioabsorbable 3D printed medical devices on the market thus far. In this study, we assessed the processability of medical grade Poly(lactic-co-glycolic) Acid (PLGA)85:15 via two additive manufacturing technologies: Fused Filament Fabrication (FFF) and Direct Pellet Printing (DPP) to highlight the least destructive technology towards PLGA. To quantify PLGA degradation, its molecular weight (gel permeation chromatography (GPC)) as well as its thermal properties (differential scanning calorimetry (DSC)) were evaluated at each processing step, including sterilization with conventional methods (ethylene oxide, gamma, and beta irradiation). Results show that 3D printing of PLGA on a DPP printer significantly decreased the number-average molecular weight (Mn) to the greatest extent (26% Mn loss, p < 0.0001) as it applies a longer residence time and higher shear stress compared to classic FFF (19% Mn loss, p < 0.0001). Among all sterilization methods tested, ethylene oxide seems to be the most appropriate, as it leads to no significant changes in PLGA properties. After sterilization, all samples were considered to be non-toxic, as cell viability was above 70% compared to the control, indicating that this manufacturing route could be used for the development of bioabsorbable medical devices. Based on our observations, we recommend using FFF printing and ethylene oxide sterilization to produce PLGA medical devices.Show less >
Language :
Anglais
Popular science :
Non
Source :
Submission date :
2024-02-17T03:48:57Z
Files
- document
- Open access
- Access the document
- polymers-13-00572-v2.pdf
- Open access
- Access the document