Learning control strategy in soft robotics ...
Type de document :
Communication dans un congrès avec actes
Titre :
Learning control strategy in soft robotics through a set of configuration spaces
Auteur(s) :
Ménager, Etienne [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Duriez, Christian [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Université de Lille
Inria Lille - Nord Europe
Deformable Robots Simulation Team [DEFROST ]
Duriez, Christian [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Université de Lille
Inria Lille - Nord Europe
Titre de la manifestation scientifique :
IEEE International Conference on Soft Robotics (RoboSoft)
Organisateur(s) de la manifestation scientifique :
IEEE
Ville :
San Diego (CA)
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2024-04
Date de publication :
2024-04
Mot(s)-clé(s) en anglais :
Modelling Control and Learning for Soft Robots.
Soft Robot Applications
Soft Robot Applications
Discipline(s) HAL :
Informatique [cs]/Robotique [cs.RO]
Résumé en anglais : [en]
The ability of a soft robot to perform specific tasks is determined by its contact configuration, and transitioning between configurations is often necessary to reach a desired position or manipulate an object. Based on ...
Lire la suite >The ability of a soft robot to perform specific tasks is determined by its contact configuration, and transitioning between configurations is often necessary to reach a desired position or manipulate an object. Based on this observation, we propose a method for controlling soft robots that involves defining a graph of configuration spaces. Different agents, whether learned or not (convex optimization, expert trajectory, and collision detection), use the structure of the graph to solve the desired task. The graph and the agents are part of the prior knowledge that is intuitively integrated into the learning process. They are used to combine different optimization methods, improve sample efficiency, and provide interpretability. We construct the graph based on the contact configurations and demonstrate its effectiveness through two scenarios, a deformable beam in contact with its environment and a soft manipulator, where it outperforms the baseline in terms of stability, learning speed, and interpretability.Lire moins >
Lire la suite >The ability of a soft robot to perform specific tasks is determined by its contact configuration, and transitioning between configurations is often necessary to reach a desired position or manipulate an object. Based on this observation, we propose a method for controlling soft robots that involves defining a graph of configuration spaces. Different agents, whether learned or not (convex optimization, expert trajectory, and collision detection), use the structure of the graph to solve the desired task. The graph and the agents are part of the prior knowledge that is intuitively integrated into the learning process. They are used to combine different optimization methods, improve sample efficiency, and provide interpretability. We construct the graph based on the contact configurations and demonstrate its effectiveness through two scenarios, a deformable beam in contact with its environment and a soft manipulator, where it outperforms the baseline in terms of stability, learning speed, and interpretability.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- configuration_space_arxiv.pdf
- Accès libre
- Accéder au document
- 2402.13649
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- configuration_space_arxiv.pdf
- Accès libre
- Accéder au document