The Cover Source Mismatch Problem in ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
The Cover Source Mismatch Problem in Deep-Learning Steganalysis
Auteur(s) :
Giboulot, Quentin [Auteur]
Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
Bas, Patrick [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cogranne, Rémi [Auteur]
Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
Dirk, Borghys [Auteur]
Ecole Royale Militaire / Koninklijke Militaire School [ERM KMS]
Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
Bas, Patrick [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cogranne, Rémi [Auteur]
Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
Dirk, Borghys [Auteur]
Ecole Royale Militaire / Koninklijke Militaire School [ERM KMS]
Titre de la manifestation scientifique :
2022 30th European Signal Processing Conference (EUSIPCO)
Ville :
Belgrade
Date de début de la manifestation scientifique :
2022-08-29
Éditeur :
IEEE
Date de publication :
2022
Mot(s)-clé(s) en anglais :
Training
Deep learning
Sensitivity
ISO
Pipelines
Signal processing
Deep learning
Sensitivity
ISO
Pipelines
Signal processing
Discipline(s) HAL :
Informatique [cs]
Résumé en anglais : [en]
This paper studies the problem of Cover Source Mismatch (CSM) in steganalysis, i.e. the impact of a testing set which does not originate from the same source than the training set. In this study, the trained steganalyzer ...
Lire la suite >This paper studies the problem of Cover Source Mismatch (CSM) in steganalysis, i.e. the impact of a testing set which does not originate from the same source than the training set. In this study, the trained steganalyzer uses state of the art deep-learning architecture prone to better generalization than feature-based steganalysis. Different sources such as the sensor model, the ISO sensitivity, the processing pipeline and the content, are investigated. Our conclusions are that, on one hand, deep learning steganalysis is still very sensitive to the CSM, on the other hand, the holistic strategy leverages the good generalization properties of deep learning to reduce the CSM with a relatively small number of training samples.Lire moins >
Lire la suite >This paper studies the problem of Cover Source Mismatch (CSM) in steganalysis, i.e. the impact of a testing set which does not originate from the same source than the training set. In this study, the trained steganalyzer uses state of the art deep-learning architecture prone to better generalization than feature-based steganalysis. Different sources such as the sensor model, the ISO sensitivity, the processing pipeline and the content, are investigated. Our conclusions are that, on one hand, deep learning steganalysis is still very sensitive to the CSM, on the other hand, the holistic strategy leverages the good generalization properties of deep learning to reduce the CSM with a relatively small number of training samples.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :