Complétude des noyaux reproduisants dans ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Complétude des noyaux reproduisants dans les espaces modèles
Author(s) :
Journal title :
Annales de l'Institut Fourier
Pages :
661--686
Publisher :
Association des Annales de l'Institut Fourier
Publication date :
2002
ISSN :
0373-0956
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
Let $(λ_n)_{n\ge 1}$ be a Blaschke sequence of the unit disc $\mathbb D$ and $\Theta$ be an innerfunction. Asssume that the sequence of reproducing kernels $(k_Θ(z, λ_n) :=\frac{1−\overline{Θ(λ_n)}Θ(z)}{1−\overline{λ_n}z})_{n\ge ...
Show more >Let $(λ_n)_{n\ge 1}$ be a Blaschke sequence of the unit disc $\mathbb D$ and $\Theta$ be an innerfunction. Asssume that the sequence of reproducing kernels $(k_Θ(z, λ_n) :=\frac{1−\overline{Θ(λ_n)}Θ(z)}{1−\overline{λ_n}z})_{n\ge 1}$ is complete in the model space $K^p_Θ := H^p\cap Θ\overline{H^p_0}$, $1<p<\infty$. First of all, we study the stability of this completeness not only under perturbations of frequences $(λ_n)_{n\ge 1}$ but also under perturbations of function Θ. We recover some classical results on exponential systems. Then, if we assume further that the sequence $(k_Θ(., λ_n))_{n\ge 1}$ is minimal, we show that, for a certain class of functions$Θ$, the biorthogonal family is also complete.Show less >
Show more >Let $(λ_n)_{n\ge 1}$ be a Blaschke sequence of the unit disc $\mathbb D$ and $\Theta$ be an innerfunction. Asssume that the sequence of reproducing kernels $(k_Θ(z, λ_n) :=\frac{1−\overline{Θ(λ_n)}Θ(z)}{1−\overline{λ_n}z})_{n\ge 1}$ is complete in the model space $K^p_Θ := H^p\cap Θ\overline{H^p_0}$, $1<p<\infty$. First of all, we study the stability of this completeness not only under perturbations of frequences $(λ_n)_{n\ge 1}$ but also under perturbations of function Θ. We recover some classical results on exponential systems. Then, if we assume further that the sequence $(k_Θ(., λ_n))_{n\ge 1}$ is minimal, we show that, for a certain class of functions$Θ$, the biorthogonal family is also complete.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- article-completude.pdf
- Open access
- Access the document