Sparse Coding-based Multichannel Spike ...
Type de document :
Communication dans un congrès avec actes
Titre :
Sparse Coding-based Multichannel Spike Sorting with the Locally Competitive Algorithm
Auteur(s) :
Melot, Alexis [Auteur]
Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] [LN2]
Alibart, Fabien [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] [LN2]
Yger, Pierre [Auteur]
Institut de la Vision
Lille Neurosciences & Cognition - U 1172 [LilNCog]
Unité de neurosciences intégratives et computationnelles [UNIC]
Institut de Neurobiologie Alfred Fessard [INAF]
Wood, Sean [Auteur]
Université de Sherbrooke [UdeS]
Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] [LN2]
Alibart, Fabien [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] [LN2]
Yger, Pierre [Auteur]
Institut de la Vision
Lille Neurosciences & Cognition - U 1172 [LilNCog]
Unité de neurosciences intégratives et computationnelles [UNIC]
Institut de Neurobiologie Alfred Fessard [INAF]
Wood, Sean [Auteur]
Université de Sherbrooke [UdeS]
Titre de la manifestation scientifique :
2023 IEEE Biomedical Circuits and Systems Conference (BioCAS)
Ville :
Toronto
Pays :
Canada
Date de début de la manifestation scientifique :
2023-10-19
Éditeur :
IEEE
Date de publication :
2024-01-18
Mot(s)-clé(s) en anglais :
locally competitive algorithm
sparse coding
spike sorting
dictionary learning
sparse coding
spike sorting
dictionary learning
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Spike sorting is a crucial step in the analysis of multichannel neural signals that enables the identification of individual neurons’ activity. However, the limited availability of low-power neuromorphic spike sorting ...
Lire la suite >Spike sorting is a crucial step in the analysis of multichannel neural signals that enables the identification of individual neurons’ activity. However, the limited availability of low-power neuromorphic spike sorting methods is due to the difficulty of processing high-density multichannel extracellular neural signals. In this study, we propose to use the locally competitive algorithm (LCA) that has been previously implemented on neuromorphic hardware as a novel feature extraction method for spike sorting. Based on a bio-inspired neural network, LCA can learn a signal-dependent dictionary of spatiotemporal features and give highly sparse representations. The proposed approach results in better sorting accuracy at low signal-to-noise ratios compared to k-SVD, a well-known sparse coding model, and the principal component analysis (PCA), a classical approach in spike sorting. This network-based solution paves the way for neuromorphic processing of multichannel neural signals in future brain implants.Lire moins >
Lire la suite >Spike sorting is a crucial step in the analysis of multichannel neural signals that enables the identification of individual neurons’ activity. However, the limited availability of low-power neuromorphic spike sorting methods is due to the difficulty of processing high-density multichannel extracellular neural signals. In this study, we propose to use the locally competitive algorithm (LCA) that has been previously implemented on neuromorphic hardware as a novel feature extraction method for spike sorting. Based on a bio-inspired neural network, LCA can learn a signal-dependent dictionary of spatiotemporal features and give highly sparse representations. The proposed approach results in better sorting accuracy at low signal-to-noise ratios compared to k-SVD, a well-known sparse coding model, and the principal component analysis (PCA), a classical approach in spike sorting. This network-based solution paves the way for neuromorphic processing of multichannel neural signals in future brain implants.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
https://github.com/NECOTIS/LCA-Spike-Sorting
Source :