Class modelling by Soft Independent Modelling ...
Document type :
Article dans une revue scientifique: Article de synthèse/Review paper
PMID :
Permalink :
Title :
Class modelling by Soft Independent Modelling of Class Analogy: why, when, how? A tutorial.
Author(s) :
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Cocchi, M. [Auteur]
Biancolillo, A. [Auteur]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Marini, F. [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Cocchi, M. [Auteur]
Biancolillo, A. [Auteur]
Ruckebusch, Cyril [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Marini, F. [Auteur]
Journal title :
Analytica Chimica Acta
Abbreviated title :
Anal Chim Acta
Volume number :
1270
Pages :
341304
Publication date :
2023-06-15
ISSN :
1873-4324
English keyword(s) :
class modelling (CM)
Soft Independent Modelling of Class Analogy (SIMCA)
Principal Component Analysis (PCA)
Orthogonal Distance (OD)
Score Distance (SD)
Soft Independent Modelling of Class Analogy (SIMCA)
Principal Component Analysis (PCA)
Orthogonal Distance (OD)
Score Distance (SD)
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
This article contains a comprehensive tutorial on classification by means of Soft Independent Modelling of Class Analogy (SIMCA). Such a tutorial was conceived in an attempt to offer pragmatic guidelines for a sensible and ...
Show more >This article contains a comprehensive tutorial on classification by means of Soft Independent Modelling of Class Analogy (SIMCA). Such a tutorial was conceived in an attempt to offer pragmatic guidelines for a sensible and correct utilisation of this tool as well as answers to three basic questions: “why employing SIMCA?”, “when employing SIMCA?” and “how employing/not employing SIMCA?”. With this purpose in mind, the following points are here addressed: i) the mathematical and statistical fundamentals of the SIMCA approach are presented; ii) distinct variants of the original SIMCA algorithm are thoroughly described and compared in two different case-studies; iii) a flowchart outlining how to fine-tune the parameters of a SIMCA model for achieving an optimal performance is provided; iv) figures of merit and graphical tools for SIMCA model assessment are illustrated and v) computational details and rational suggestions about SIMCA model validation are given. Moreover, a novel Matlab toolbox, which encompasses routines and functions for running and contrasting all the aforementioned SIMCA versions is also made available.Show less >
Show more >This article contains a comprehensive tutorial on classification by means of Soft Independent Modelling of Class Analogy (SIMCA). Such a tutorial was conceived in an attempt to offer pragmatic guidelines for a sensible and correct utilisation of this tool as well as answers to three basic questions: “why employing SIMCA?”, “when employing SIMCA?” and “how employing/not employing SIMCA?”. With this purpose in mind, the following points are here addressed: i) the mathematical and statistical fundamentals of the SIMCA approach are presented; ii) distinct variants of the original SIMCA algorithm are thoroughly described and compared in two different case-studies; iii) a flowchart outlining how to fine-tune the parameters of a SIMCA model for achieving an optimal performance is provided; iv) figures of merit and graphical tools for SIMCA model assessment are illustrated and v) computational details and rational suggestions about SIMCA model validation are given. Moreover, a novel Matlab toolbox, which encompasses routines and functions for running and contrasting all the aforementioned SIMCA versions is also made available.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Submission date :
2024-02-28T22:10:08Z
2024-03-11T16:09:35Z
2024-03-11T16:09:35Z