Conductor zeta function for the GL(2) ...
Type de document :
Pré-publication ou Document de travail
Titre :
Conductor zeta function for the GL(2) universal family
Auteur(s) :
Brumley, Farrell [Auteur]
Laboratoire Analyse, Géométrie et Applications [LAGA]
Lesesvre, Didier [Auteur]
Milićević, Djordje [Auteur]
Laboratoire Analyse, Géométrie et Applications [LAGA]
Lesesvre, Didier [Auteur]
Milićević, Djordje [Auteur]
Discipline(s) HAL :
Mathématiques [math]/Théorie des nombres [math.NT]
Mathématiques [math]/Théorie des représentations [math.RT]
Mathématiques [math]/Théorie spectrale [math.SP]
Mathématiques [math]/Théorie des représentations [math.RT]
Mathématiques [math]/Théorie spectrale [math.SP]
Résumé en anglais : [en]
We obtain a Weyl law with power savings for the universal families of cuspidal automorphic representations, ordered by analytic conductor, of $\mathrm{GL}_2$ over $\mathbb{Q}$, as well as for Hecke characters over any ...
Lire la suite >We obtain a Weyl law with power savings for the universal families of cuspidal automorphic representations, ordered by analytic conductor, of $\mathrm{GL}_2$ over $\mathbb{Q}$, as well as for Hecke characters over any number field. The method proceeds by establishing the requisite analytic properties of the underlying conductor zeta function.Lire moins >
Lire la suite >We obtain a Weyl law with power savings for the universal families of cuspidal automorphic representations, ordered by analytic conductor, of $\mathrm{GL}_2$ over $\mathbb{Q}$, as well as for Hecke characters over any number field. The method proceeds by establishing the requisite analytic properties of the underlying conductor zeta function.Lire moins >
Langue :
Anglais
Commentaire :
26 pages
Collections :
Source :
Fichiers
- 2105.02068
- Accès libre
- Accéder au document