Direct Electrodeposition of Electrically ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Direct Electrodeposition of Electrically Conducting Ni 3 (HITP) 2 MOF Nanostructures for Micro‐Supercapacitor Integration
Author(s) :
Behboudikhiavi, Sepideh [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Chanteux, Géraldine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Babu, Binson [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
Faniel, Sébastien [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Marlec, Florent [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Robert, Kevin [Auteur]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Magnin, Delphine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lucaccioni, Fabio [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Omale, Joel Ojonugwa [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Apostol, Petru [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Piraux, Luc [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lethien, Christophe [Auteur]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut universitaire de France [IUF]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vlad, Alexandru [Auteur correspondant]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Chanteux, Géraldine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Babu, Binson [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
Faniel, Sébastien [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Marlec, Florent [Auteur]

Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Robert, Kevin [Auteur]

Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Magnin, Delphine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lucaccioni, Fabio [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Omale, Joel Ojonugwa [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Apostol, Petru [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Piraux, Luc [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lethien, Christophe [Auteur]

Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut universitaire de France [IUF]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vlad, Alexandru [Auteur correspondant]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Journal title :
Small
Publisher :
Wiley-VCH Verlag
Publication date :
2024-05-02
ISSN :
1613-6810
English keyword(s) :
anodic electrodeposition
micro-supercapacitor
MOFs nanostructure
non-sacrificial
micro-supercapacitor
MOFs nanostructure
non-sacrificial
HAL domain(s) :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other ...
Show more >Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double‐layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal–organic frameworks (MOFs). However, techniques for conformal deposition at micro‐ and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non‐sacrificial anodic electrochemical deposition of Ni 3 (2,3,6,7,10,11‐hexaiminotriphenylene) 2 – Ni 3 (HITP) 2 , a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni 3 (HITP) 2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni 3 (HITP) 2 nanotubes and Pt@ Ni 3 (HITP) 2 core–shell nanowires. Based on the optimal electrodeposition protocols, Ni 3 (HITP) 2 films interdigitated micro‐supercapacitors are fabricated and tested as a proof of concept.Show less >
Show more >Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double‐layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal–organic frameworks (MOFs). However, techniques for conformal deposition at micro‐ and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non‐sacrificial anodic electrochemical deposition of Ni 3 (2,3,6,7,10,11‐hexaiminotriphenylene) 2 – Ni 3 (HITP) 2 , a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni 3 (HITP) 2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni 3 (HITP) 2 nanotubes and Pt@ Ni 3 (HITP) 2 core–shell nanowires. Based on the optimal electrodeposition protocols, Ni 3 (HITP) 2 films interdigitated micro‐supercapacitors are fabricated and tested as a proof of concept.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Source :
Files
- document
- Open access
- Access the document
- smll.202401509%20%28preprint.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- smll.202401509%20%28preprint.pdf
- Open access
- Access the document