Direct Electrodeposition of Electrically ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Direct Electrodeposition of Electrically Conducting Ni 3 (HITP) 2 MOF Nanostructures for Micro‐Supercapacitor Integration
Auteur(s) :
Behboudikhiavi, Sepideh [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Chanteux, Géraldine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Babu, Binson [Auteur]
Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Faniel, Sébastien [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Marlec, Florent [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Robert, Kevin [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Magnin, Delphine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lucaccioni, Fabio [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Omale, Joel Ojonugwa [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Apostol, Petru [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Piraux, Luc [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lethien, Christophe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut universitaire de France [IUF]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Vlad, Alexandru [Auteur correspondant]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Chanteux, Géraldine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Babu, Binson [Auteur]
Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Faniel, Sébastien [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Marlec, Florent [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Robert, Kevin [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Magnin, Delphine [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lucaccioni, Fabio [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Omale, Joel Ojonugwa [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Apostol, Petru [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Piraux, Luc [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Lethien, Christophe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut universitaire de France [IUF]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Vlad, Alexandru [Auteur correspondant]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Titre de la revue :
Small
Éditeur :
Wiley-VCH Verlag
Date de publication :
2024-05-02
ISSN :
1613-6810
Mot(s)-clé(s) en anglais :
anodic electrodeposition
micro-supercapacitor
MOFs nanostructure
non-sacrificial
micro-supercapacitor
MOFs nanostructure
non-sacrificial
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other ...
Lire la suite >Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double‐layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal–organic frameworks (MOFs). However, techniques for conformal deposition at micro‐ and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non‐sacrificial anodic electrochemical deposition of Ni 3 (2,3,6,7,10,11‐hexaiminotriphenylene) 2 – Ni 3 (HITP) 2 , a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni 3 (HITP) 2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni 3 (HITP) 2 nanotubes and Pt@ Ni 3 (HITP) 2 core–shell nanowires. Based on the optimal electrodeposition protocols, Ni 3 (HITP) 2 films interdigitated micro‐supercapacitors are fabricated and tested as a proof of concept.Lire moins >
Lire la suite >Abstract Micro‐supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large‐scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double‐layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal–organic frameworks (MOFs). However, techniques for conformal deposition at micro‐ and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non‐sacrificial anodic electrochemical deposition of Ni 3 (2,3,6,7,10,11‐hexaiminotriphenylene) 2 – Ni 3 (HITP) 2 , a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni 3 (HITP) 2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni 3 (HITP) 2 nanotubes and Pt@ Ni 3 (HITP) 2 core–shell nanowires. Based on the optimal electrodeposition protocols, Ni 3 (HITP) 2 films interdigitated micro‐supercapacitors are fabricated and tested as a proof of concept.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- smll.202401509%20%28preprint.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- smll.202401509%20%28preprint.pdf
- Accès libre
- Accéder au document