Strassen's algorithm is not optimally accurate
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Strassen's algorithm is not optimally accurate
Auteur(s) :
Dumas, Jean-Guillaume [Auteur]
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Pernet, Clément [Auteur]
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Sedoglavic, Alexandre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Pernet, Clément [Auteur]
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Sedoglavic, Alexandre [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université de Lille
Éditeur(s) ou directeur(s) scientifique(s) :
Shaoshi Chen
Titre de la manifestation scientifique :
49th International Symposium on Symbolic and Algebraic Computation (ISSAC'24)
Organisateur(s) de la manifestation scientifique :
ACM SIGSAM
Ville :
Raleigh, NC
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2024-07-15
Éditeur :
ACM
Lieu de publication :
Raleigh, NC, USA
Date de publication :
2024-07-16
Discipline(s) HAL :
Informatique [cs]/Analyse numérique [cs.NA]
Informatique [cs]/Calcul formel [cs.SC]
Informatique [cs]/Calcul formel [cs.SC]
Résumé en anglais : [en]
We propose a non-commutative algorithm for multiplying 2×2 matrices using 7 coefficient products. This algorithm reaches simultaneously a better accuracy in practice compared to previously known such fast algorithms, and ...
Lire la suite >We propose a non-commutative algorithm for multiplying 2×2 matrices using 7 coefficient products. This algorithm reaches simultaneously a better accuracy in practice compared to previously known such fast algorithms, and a time complexity bound with the best currently known leading term (obtained via alternate basis sparsification). To build this algorithm, we consider matrix and tensor norms bounds governing the stability and accuracy of numerical matrix multiplication. First, we reduce those bounds by minimizing a growth factor along the unique orbit of Strassen's 2×2-matrix multiplication tensor decomposition. Second, we develop heuristics for minimizing the number of operations required to realize a given bilinear formula, while further improving its accuracy. Third, we perform an alternate basis sparsification that improves on the time complexity constant and mostly preserves the overall accuracy.Lire moins >
Lire la suite >We propose a non-commutative algorithm for multiplying 2×2 matrices using 7 coefficient products. This algorithm reaches simultaneously a better accuracy in practice compared to previously known such fast algorithms, and a time complexity bound with the best currently known leading term (obtained via alternate basis sparsification). To build this algorithm, we consider matrix and tensor norms bounds governing the stability and accuracy of numerical matrix multiplication. First, we reduce those bounds by minimizing a growth factor along the unique orbit of Strassen's 2×2-matrix multiplication tensor decomposition. Second, we develop heuristics for minimizing the number of operations required to realize a given bilinear formula, while further improving its accuracy. Third, we perform an alternate basis sparsification that improves on the time complexity constant and mostly preserves the overall accuracy.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- strassenaccurate.pdf
- Accès libre
- Accéder au document
- 2402.05630
- Accès libre
- Accéder au document