Machine Learning-Based Microwave Techniques ...
Type de document :
Communication dans un congrès avec actes
Titre :
Machine Learning-Based Microwave Techniques for Dielectric Material Classification
Auteur(s) :
Alsaleh, Nawal [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Pomorski, Denis [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sebbache, Mohamed [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Haddadi, Kamel [Auteur]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Pomorski, Denis [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sebbache, Mohamed [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Haddadi, Kamel [Auteur]

Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
2024 IEEE Symposium on Wireless Technology & Applications (ISWTA)
Ville :
Kuala Lumpur
Pays :
Malaisie
Date de début de la manifestation scientifique :
2024-07-20
Éditeur :
IEEE
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
This paper presents two innovative Microwave Non-Destructive Testing and Evaluation (MNDT&E) techniques designed specifically for characterizing planar dielectric materials, regardless of their thickness. These techniques ...
Lire la suite >This paper presents two innovative Microwave Non-Destructive Testing and Evaluation (MNDT&E) techniques designed specifically for characterizing planar dielectric materials, regardless of their thickness. These techniques involve measuring the reflection coefficient parameters S11 of the materials using two separate microwave characterization instruments: a monostatic free-space radar and an open-ended rectangular waveguide (OERW). Our objective is to develop a compact, low-power, fast instrument for classifying and evaluating the materials sensed by microwaves across a frequency range varying from 3.95 to 5.85 GHz. These approaches coupled with machine learning (ML) models, are employed and validated within two distinct environmental settings: controlled laboratory conditions and more challenging real-world noisy conditions. Furthermore, a comparative performance analysis is conducted between the two proposed techniques.Lire moins >
Lire la suite >This paper presents two innovative Microwave Non-Destructive Testing and Evaluation (MNDT&E) techniques designed specifically for characterizing planar dielectric materials, regardless of their thickness. These techniques involve measuring the reflection coefficient parameters S11 of the materials using two separate microwave characterization instruments: a monostatic free-space radar and an open-ended rectangular waveguide (OERW). Our objective is to develop a compact, low-power, fast instrument for classifying and evaluating the materials sensed by microwaves across a frequency range varying from 3.95 to 5.85 GHz. These approaches coupled with machine learning (ML) models, are employed and validated within two distinct environmental settings: controlled laboratory conditions and more challenging real-world noisy conditions. Furthermore, a comparative performance analysis is conducted between the two proposed techniques.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Alsaleh_2024_ISWTA.pdf
- Accès libre
- Accéder au document