Uniform $C^{1,\alpha}$-regularity for ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Uniform $C^{1,\alpha}$-regularity for almost-minimizers of some nonlocal perturbations of the perimeter
Auteur(s) :
Goldman, Michael [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Institut Polytechnique de Paris [IP Paris]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Pegon, Marc [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Institut Polytechnique de Paris [IP Paris]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Pegon, Marc [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Archive for Rational Mechanics and Analysis
Pagination :
102
Éditeur :
Springer Verlag
Date de publication :
2024-10-22
ISSN :
0003-9527
Mot(s)-clé(s) en anglais :
geometric variational problems
nonlocal isoperimetric problems
nonlocal perimeters
regularity
liquid drop model
nonlocal isoperimetric problems
nonlocal perimeters
regularity
liquid drop model
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
In this paper, we establish a $C^{1,\alpha}$-regularity theorem for almost-minimizers of the functional $\mathcal{F}_{\varepsilon,\gamma}=P-\gamma P_{\varepsilon}$, where $\gamma\in(0,1)$ and $P_{\varepsilon}$ is a nonlocal ...
Lire la suite >In this paper, we establish a $C^{1,\alpha}$-regularity theorem for almost-minimizers of the functional $\mathcal{F}_{\varepsilon,\gamma}=P-\gamma P_{\varepsilon}$, where $\gamma\in(0,1)$ and $P_{\varepsilon}$ is a nonlocal energy converging to the perimeter as $\varepsilon$ vanishes.Our theorem provides a criterion for $C^{1,\alpha}$-regularity at a point of the boundary which is uniform as the parameter $\varepsilon$ goes to $0$.As a consequence we obtain that volume-constrained minimizers of $\mathcal{F}_{\varepsilon,\gamma}$ are balls for any $\varepsilon$ small enough. For small $\varepsilon$, this minimization problem corresponds to the large mass regime for a Gamow-type problem where the nonlocal repulsive term is given by an integrable kernel $G$ with sufficiently fast decay at infinity.Lire moins >
Lire la suite >In this paper, we establish a $C^{1,\alpha}$-regularity theorem for almost-minimizers of the functional $\mathcal{F}_{\varepsilon,\gamma}=P-\gamma P_{\varepsilon}$, where $\gamma\in(0,1)$ and $P_{\varepsilon}$ is a nonlocal energy converging to the perimeter as $\varepsilon$ vanishes.Our theorem provides a criterion for $C^{1,\alpha}$-regularity at a point of the boundary which is uniform as the parameter $\varepsilon$ goes to $0$.As a consequence we obtain that volume-constrained minimizers of $\mathcal{F}_{\varepsilon,\gamma}$ are balls for any $\varepsilon$ small enough. For small $\varepsilon$, this minimization problem corresponds to the large mass regime for a Gamow-type problem where the nonlocal repulsive term is given by an integrable kernel $G$ with sufficiently fast decay at infinity.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- uniform_regularity.pdf
- Accès libre
- Accéder au document