Set-decomposition of normal rectifiable ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Set-decomposition of normal rectifiable G-chains via an abstract decomposition principle
Auteur(s) :
Goldman, Michael [Auteur]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
Merlet, Benoît [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Revista Matemática Iberoamericana
Pagination :
2073-2094
Éditeur :
European Mathematical Society
Date de publication :
2024-10-03
ISSN :
0213-2230
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We introduce the notion of set-decomposition of a normal G-flat chain. We show that any normal rectifiable $G$-flat chain admits a decomposition in set-indecomposable sub-chains. This generalizes the decomposition of sets ...
Lire la suite >We introduce the notion of set-decomposition of a normal G-flat chain. We show that any normal rectifiable $G$-flat chain admits a decomposition in set-indecomposable sub-chains. This generalizes the decomposition of sets of finite perimeter in their ``measure theoretic" connected components due to Ambrosio, Caselles, Masnou and Morel. It can also be seen as a variant of the decomposition of integral currents in indecomposable components by Federer.As opposed to previous results, we do not assume that G is boundedly compact. Therefore we cannot rely on the compactness of sequences of chains with uniformly bounded N-norms. We deduce instead the result from a new abstract decomposition principle. As in earlier proofs a central ingredient is the validity of an isoperimetric inequality. We obtain it here using the finiteness of some h-mass to replace integrality.Lire moins >
Lire la suite >We introduce the notion of set-decomposition of a normal G-flat chain. We show that any normal rectifiable $G$-flat chain admits a decomposition in set-indecomposable sub-chains. This generalizes the decomposition of sets of finite perimeter in their ``measure theoretic" connected components due to Ambrosio, Caselles, Masnou and Morel. It can also be seen as a variant of the decomposition of integral currents in indecomposable components by Federer.As opposed to previous results, we do not assume that G is boundedly compact. Therefore we cannot rely on the compactness of sequences of chains with uniformly bounded N-norms. We deduce instead the result from a new abstract decomposition principle. As in earlier proofs a central ingredient is the validity of an isoperimetric inequality. We obtain it here using the finiteness of some h-mass to replace integrality.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- SetDecompositionOfGChains_revised.pdf
- Accès libre
- Accéder au document
- 2212.04752
- Accès libre
- Accéder au document