HYPERBOLIC ENTROPY FOR HARMONIC MEASURES ...
Type de document :
Pré-publication ou Document de travail
URL permanente :
Titre :
HYPERBOLIC ENTROPY FOR HARMONIC MEASURES ON SINGULAR HOLOMORPHIC FOLIATIONS
Auteur(s) :
Date de publication :
2024-10-25
Mot(s)-clé(s) en anglais :
Singular holomorphic foliation
Hyperbolic entropy
Ergodic Theory
Poincaré metric
Harmonic measures
Hyperbolic entropy
Ergodic Theory
Poincaré metric
Harmonic measures
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
<div><p>Let F " pM, L , Eq be a Brody-hyperbolic singular holomorphic foliation on a compact complex manifold M . Suppose that F has isolated singularities and that its Poincaré metric is complete. This is the case for a ...
Lire la suite ><div><p>Let F " pM, L , Eq be a Brody-hyperbolic singular holomorphic foliation on a compact complex manifold M . Suppose that F has isolated singularities and that its Poincaré metric is complete. This is the case for a very large class of singularities, namely, non-degenerate and saddle-nodes in dimension 2. Let µ be an ergodic harmonic measure on F . We show that the upper and lower local hyperbolic entropies of µ are leafwise constant almost everywhere. Moreover, we show that the entropy of µ is at least 2.</p></div>Lire moins >
Lire la suite ><div><p>Let F " pM, L , Eq be a Brody-hyperbolic singular holomorphic foliation on a compact complex manifold M . Suppose that F has isolated singularities and that its Poincaré metric is complete. This is the case for a very large class of singularities, namely, non-degenerate and saddle-nodes in dimension 2. Let µ be an ergodic harmonic measure on F . We show that the upper and lower local hyperbolic entropies of µ are leafwise constant almost everywhere. Moreover, we show that the entropy of µ is at least 2.</p></div>Lire moins >
Langue :
Anglais
Projet ANR :
Collections :
Source :
Date de dépôt :
2024-11-07T09:02:14Z
Fichiers
- document
- Accès libre
- Accéder au document
- Entropy2_corr.pdf
- Accès libre
- Accéder au document
- 2406.09793
- Accès libre
- Accéder au document