Multigrid sequential data assimilation for ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Multigrid sequential data assimilation for the Large Eddy Simulation of a massively separated bluff-body flow
Auteur(s) :
Moldovan, Gabriel-Ionut [Auteur]
European Centre for Medium-Range Weather Forecasts [ECMWF]
Mariotti, Alessandro [Auteur]
University of Pisa [Italy] = Università di Pisa [Italia] = Université de Pise [Italie] [UniPi]
Cordier, Laurent [Auteur]
CURIOSITY [Institut Pprime]
Lehnasch, Guillaume [Auteur]
École Nationale Supérieure de Mécanique et d’Aérotechnique [Poitiers] [ISAE-ENSMA]
Acoustique, Aérodynamique, Turbulence [Institut Pprime] [2AT ]
Salvetti, Maria-Vittoria [Auteur]
University of Pisa [Italy] = Università di Pisa [Italia] = Université de Pise [Italie] [UniPi]
Meldi, Marcello [Auteur]
Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
European Centre for Medium-Range Weather Forecasts [ECMWF]
Mariotti, Alessandro [Auteur]
University of Pisa [Italy] = Università di Pisa [Italia] = Université de Pise [Italie] [UniPi]
Cordier, Laurent [Auteur]
CURIOSITY [Institut Pprime]
Lehnasch, Guillaume [Auteur]
École Nationale Supérieure de Mécanique et d’Aérotechnique [Poitiers] [ISAE-ENSMA]
Acoustique, Aérodynamique, Turbulence [Institut Pprime] [2AT ]
Salvetti, Maria-Vittoria [Auteur]
University of Pisa [Italy] = Università di Pisa [Italia] = Université de Pise [Italie] [UniPi]
Meldi, Marcello [Auteur]
Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
Titre de la revue :
Computers and Fluids
Pagination :
106385
Éditeur :
Elsevier
Date de publication :
2024-08
ISSN :
0045-7930
Mot(s)-clé(s) en anglais :
Kalman Filter
Data Assimilation
LES
BARC
Data Assimilation
LES
BARC
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Milieux fluides et réactifs
Sciences de l'ingénieur [physics]/Milieux fluides et réactifs
Résumé en anglais : [en]
The potential of sequential Data Assimilation (DA) techniques to improve the numerical accuracy of Large Eddy Simulation (LES) performed on coarse grid is assessed. Specifically, this paper evaluates the performance of the ...
Lire la suite >The potential of sequential Data Assimilation (DA) techniques to improve the numerical accuracy of Large Eddy Simulation (LES) performed on coarse grid is assessed. Specifically, this paper evaluates the performance of the Multigrid Ensemble Kalman Filter (MGEnKF) method, recently introduced by Moldovan, Lehnasch, Cordier and Meldi (Journal of Computational Physics, 2021). The international benchmark referred to as BARC (Benchmark of the Aerodynamics of a Rectangular 5:1 Cylinder) is chosen as test configuration, as it includes several complex flow dynamics encountered in turbulence studies. The results for the statistical moments of the velocity and pressure flow field show that the data-driven techniques employed are able to significantly improve the predictive features of the solver for reduced grid resolution. In addition, it was observed that, despite the sparse and asymmetric distribution of observation in the data-driven process, the DA augmented LES exhibits symmetric statistics and a significantly improved accuracy also far from the observation zone.Lire moins >
Lire la suite >The potential of sequential Data Assimilation (DA) techniques to improve the numerical accuracy of Large Eddy Simulation (LES) performed on coarse grid is assessed. Specifically, this paper evaluates the performance of the Multigrid Ensemble Kalman Filter (MGEnKF) method, recently introduced by Moldovan, Lehnasch, Cordier and Meldi (Journal of Computational Physics, 2021). The international benchmark referred to as BARC (Benchmark of the Aerodynamics of a Rectangular 5:1 Cylinder) is chosen as test configuration, as it includes several complex flow dynamics encountered in turbulence studies. The results for the statistical moments of the velocity and pressure flow field show that the data-driven techniques employed are able to significantly improve the predictive features of the solver for reduced grid resolution. In addition, it was observed that, despite the sparse and asymmetric distribution of observation in the data-driven process, the DA augmented LES exhibits symmetric statistics and a significantly improved accuracy also far from the observation zone.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- 2212.13831
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 2212.13831v1.pdf
- Accès libre
- Accéder au document