On Dirichlet eigenvalues of regular polygons
Document type :
Compte-rendu et recension critique d'ouvrage
Permalink :
Title :
On Dirichlet eigenvalues of regular polygons
Author(s) :
Berghaus, David [Auteur]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Georgiev, Bogdan [Auteur]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Monien, Hartmut [Auteur]
Bethe Center for Theoretical Physics [BCTP]
Radchenko, Danylo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Georgiev, Bogdan [Auteur]
Fraunhofer Institute for Intelligent Analysis and Information Systems [Fraunhofer IAIS]
Monien, Hartmut [Auteur]
Bethe Center for Theoretical Physics [BCTP]
Radchenko, Danylo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Journal of Mathematical Analysis and Applications
Pages :
128460
Publisher :
Elsevier
Publication date :
2024-04-25
ISSN :
0022-247X
English keyword(s) :
Dirichlet eigenvalues
Regular polygons
Multiple zeta values
Asymptotics
Regular polygons
Multiple zeta values
Asymptotics
HAL domain(s) :
Mathématiques [math]
English abstract : [en]
We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1*(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ where $\lambda_1$ is the first Dirichlet eigenvalue ...
Show more >We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1*(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ where $\lambda_1$ is the first Dirichlet eigenvalue of the unit disk and $C_n$ are polynomials whose coefficients belong to the space of multiple zeta values of weight n and conjecture that their coefficients lie in the space of single-valued multiple zeta values. We also explicitly compute these polynomials for all $n \le 14$.Show less >
Show more >We prove that the first Dirichlet eigenvalue of a regular $N$-gon of area $\pi$ has an asymptotic expansion of the form $\lambda_1*(1+\sum_{n\ge3}C_n(\lambda_1)N^{-n})$ where $\lambda_1$ is the first Dirichlet eigenvalue of the unit disk and $C_n$ are polynomials whose coefficients belong to the space of multiple zeta values of weight n and conjecture that their coefficients lie in the space of single-valued multiple zeta values. We also explicitly compute these polynomials for all $n \le 14$.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Submission date :
2024-11-22T04:34:18Z
Files
- document
- Open access
- Access the document
- 1-s2.0-S0022247X24003822-main.pdf
- Open access
- Access the document