All-around local structure classification ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
All-around local structure classification with supervised learning: The example of crystal phases and dislocations in complex oxides
Author(s) :
Furstoss, Jean [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Institut Pprime [UPR 3346] [PPrime [Poitiers]]
Salazar, Carlos R. [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Carrez, Philippe [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hirel, Pierre [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lam, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207

Unité Matériaux et Transformations (UMET) - UMR 8207
Institut Pprime [UPR 3346] [PPrime [Poitiers]]
Salazar, Carlos R. [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Carrez, Philippe [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Hirel, Pierre [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Lam, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Journal title :
Computer Physics Communications
Abbreviated title :
Computer Physics Communications
Volume number :
309
Pages :
109480
Publisher :
Elsevier
Publication date :
2025-01-08
ISSN :
0010-4655
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Planète et Univers [physics]/Sciences de la Terre
Planète et Univers [physics]/Sciences de la Terre
English abstract : [en]
To accurately identify local structures in atomic-scale simulations of complex materials is crucial for the study of numerous physical phenomena including dynamic plasticity, crystal nucleation and glass formation. In this ...
Show more >To accurately identify local structures in atomic-scale simulations of complex materials is crucial for the study of numerous physical phenomena including dynamic plasticity, crystal nucleation and glass formation. In this work, we propose a data-driven method to characterize local atomic environments, and assign them to crystal phases or lattice defects. After constructing a reference database, our approach uses descriptors based on Steinhardt's parameters and a Gaussian mixture model to identify the most probable environment. This approach is validated against several test cases: polymorph identification in alumina, and dislocation and grain boundary analysis in the olivine structure.Show less >
Show more >To accurately identify local structures in atomic-scale simulations of complex materials is crucial for the study of numerous physical phenomena including dynamic plasticity, crystal nucleation and glass formation. In this work, we propose a data-driven method to characterize local atomic environments, and assign them to crystal phases or lattice defects. After constructing a reference database, our approach uses descriptors based on Steinhardt's parameters and a Gaussian mixture model to identify the most probable environment. This approach is validated against several test cases: polymorph identification in alumina, and dislocation and grain boundary analysis in the olivine structure.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
ANR Project :
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Plasticité
Submission date :
2025-01-16T12:20:31Z
2025-01-16T15:19:02Z
2025-01-16T15:19:02Z
Files
- 2025_Furstoss_All-Around-Local-Structure-Classification-Supervised-Machine-Learning.pdf
- Version éditeur
- Open access
- Access the document