Minimax Excess Risk of First-Order Methods ...
Type de document :
Communication dans un congrès avec actes
Titre :
Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent Oracles
Auteur(s) :
Scaman, Kevin [Auteur]
Département d'informatique - ENS-PSL [DI-ENS]
Apprentissage, graphes et optimisation distribuée [ARGO]
Even, Mathieu [Auteur]
Département d'informatique - ENS-PSL [DI-ENS]
Bars, Batiste Le [Auteur]
Machine Learning in Information Networks [MAGNET]
Massoulié, Laurent [Auteur]
Département d'informatique - ENS-PSL [DI-ENS]
Apprentissage, graphes et optimisation distribuée [ARGO]
Département d'informatique - ENS-PSL [DI-ENS]
Apprentissage, graphes et optimisation distribuée [ARGO]
Even, Mathieu [Auteur]
Département d'informatique - ENS-PSL [DI-ENS]
Bars, Batiste Le [Auteur]
Machine Learning in Information Networks [MAGNET]
Massoulié, Laurent [Auteur]
Département d'informatique - ENS-PSL [DI-ENS]
Apprentissage, graphes et optimisation distribuée [ARGO]
Titre de la manifestation scientifique :
AISTATS 2024 - International Conference on Artificial Intelligence and Statistics
Ville :
Valencia
Pays :
Espagne
Date de début de la manifestation scientifique :
2024-05-02
Date de publication :
2024
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
In this paper, our aim is to analyse the generalization capabilities of first-order methods for statistical learning in multiple, different yet related, scenarios including supervised learning, transfer learning, robust ...
Lire la suite >In this paper, our aim is to analyse the generalization capabilities of first-order methods for statistical learning in multiple, different yet related, scenarios including supervised learning, transfer learning, robust learning and federated learning. To do so, we provide sharp upper and lower bounds for the minimax excess risk of strongly convex and smooth statistical learning when the gradient is accessed through partial observations given by a data-dependent oracle. This novel class of oracles can query the gradient with any given data distribution, and is thus well suited to scenarios in which the training data distribution does not match the target (or test) distribution. In particular, our upper and lower bounds are proportional to the smallest mean square error achievable by gradient estimators, thus allowing us to easily derive multiple sharp bounds in the aforementioned scenarios using the extensive literature on parameter estimation.Lire moins >
Lire la suite >In this paper, our aim is to analyse the generalization capabilities of first-order methods for statistical learning in multiple, different yet related, scenarios including supervised learning, transfer learning, robust learning and federated learning. To do so, we provide sharp upper and lower bounds for the minimax excess risk of strongly convex and smooth statistical learning when the gradient is accessed through partial observations given by a data-dependent oracle. This novel class of oracles can query the gradient with any given data distribution, and is thus well suited to scenarios in which the training data distribution does not match the target (or test) distribution. In particular, our upper and lower bounds are proportional to the smallest mean square error achievable by gradient estimators, thus allowing us to easily derive multiple sharp bounds in the aforementioned scenarios using the extensive literature on parameter estimation.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Commentaire :
22 pages, 0 figures
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- scaman24a.pdf
- Accès libre
- Accéder au document
- 2307.04679
- Accès libre
- Accéder au document