Estimation of non-separable regressions ...
Type de document :
Communication dans un congrès avec actes
Titre :
Estimation of non-separable regressions containing parameter dependent exponential functions
Auteur(s) :
Ushirobira, Rosane [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Romero, Jose [Auteur]
Instituto Tecnológico Autónomo de México [ITAM]
Ortega, Romeo [Auteur]
Instituto Tecnológico Autónomo de México [ITAM]

Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Romero, Jose [Auteur]
Instituto Tecnológico Autónomo de México [ITAM]
Ortega, Romeo [Auteur]
Instituto Tecnológico Autónomo de México [ITAM]
Titre de la manifestation scientifique :
63rd IEEE Conference on Decision and Control - CDC 2024
Ville :
Milan
Pays :
Italie
Date de début de la manifestation scientifique :
2024-12-16
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
This paper presents a method for generating a separable regression function from a nonseparable one, enabling the application of parameter estimation methods. In particular, we are interested in regressions containing ...
Lire la suite >This paper presents a method for generating a separable regression function from a nonseparable one, enabling the application of parameter estimation methods. In particular, we are interested in regressions containing parameter-dependent exponential functions -a scenario often encountered in physical systems. Our approach is based on algebraic techniques with the so-called annihilator theory and utilizes an intermediate approximation of the nonlinear part by a polynomial function of the time. Two operators are proposed to define the annihilators: time delays and differential operators. The efficiency of the proposed approach is demonstrated in a nonlinearly parameterized fuel cell estimation problem.Lire moins >
Lire la suite >This paper presents a method for generating a separable regression function from a nonseparable one, enabling the application of parameter estimation methods. In particular, we are interested in regressions containing parameter-dependent exponential functions -a scenario often encountered in physical systems. Our approach is based on algebraic techniques with the so-called annihilator theory and utilizes an intermediate approximation of the nonlinear part by a polynomial function of the time. Two operators are proposed to define the annihilators: time delays and differential operators. The efficiency of the proposed approach is demonstrated in a nonlinearly parameterized fuel cell estimation problem.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- UERO_CDC24_final.pdf
- Accès libre
- Accéder au document