Hyperexponential Stabilization of Double ...
Document type :
Article dans une revue scientifique: Article original
Title :
Hyperexponential Stabilization of Double Integrator with Unmatched Perturbations
Author(s) :
Labbadi, Moussa [Auteur]
Aix Marseille Université [AMU]
Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) [LIS]
Contrôle et optimisation des systèmes et énergie [COSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Aix Marseille Université [AMU]
Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) [LIS]
Contrôle et optimisation des systèmes et énergie [COSE]
Efimov, Denis [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Journal title :
IEEE Control Systems Letters
Publisher :
IEEE
Publication date :
2024
English keyword(s) :
Double integrator
Matched and unmatched perturbations
Hyperexponential convergence
Differentiator
Matched and unmatched perturbations
Hyperexponential convergence
Differentiator
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
In this letter, we propose linear time-varying state feedback controllers for a double integrator system subject to bounded disturbances. Under the proposed controls, the first state of the double integrator converges to ...
Show more >In this letter, we propose linear time-varying state feedback controllers for a double integrator system subject to bounded disturbances. Under the proposed controls, the first state of the double integrator converges to zero at a hyperexponential rate (faster than any exponential decay) uniformly with respect to the disturbances. Meanwhile, the second state stays bounded or approaches the negative of an unmatched differentiable perturbation. These results are applied to design a novel differentiator.Show less >
Show more >In this letter, we propose linear time-varying state feedback controllers for a double integrator system subject to bounded disturbances. Under the proposed controls, the first state of the double integrator converges to zero at a hyperexponential rate (faster than any exponential decay) uniformly with respect to the disturbances. Meanwhile, the second state stays bounded or approaches the negative of an unmatched differentiable perturbation. These results are applied to design a novel differentiator.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- _24-1125_vf.pdf
- Open access
- Access the document