On the infinite divisibility of inverse ...
Type de document :
Pré-publication ou Document de travail
URL permanente :
Titre :
On the infinite divisibility of inverse Beta distributions
Auteur(s) :
Bosch, Pierre [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Simon, Thomas [Auteur]
Laboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Simon, Thomas [Auteur]

Laboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mot(s)-clé(s) en anglais :
Beta distribution
Gamma distribution
Generalized Gamma convolution
Hyperbolically complete monotonicity
Hypergeometric series
Lévy perpetuity
Self-decomposability
Stieltjes transform
Gamma distribution
Generalized Gamma convolution
Hyperbolically complete monotonicity
Hypergeometric series
Lévy perpetuity
Self-decomposability
Stieltjes transform
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
We show that all negative powers B_{a,b}^-{s} of the Beta distribution are infinitely divisible. The case b<1 follows by complete monotonicity, the case b > 1, s > 1 by hyperbolically complete monotonicity and the case b ...
Lire la suite >We show that all negative powers B_{a,b}^-{s} of the Beta distribution are infinitely divisible. The case b<1 follows by complete monotonicity, the case b > 1, s > 1 by hyperbolically complete monotonicity and the case b > 1, s < 1 by a Lévy perpetuity argument involving the hypergeometric series. We also observe that B_{a,b}^{-s} is self-decomposable whenever 2a + b + s + bs > 1, and that it is not always a generalized Gamma convolution. On the other hand, we prove that all negative powers of the Gamma distribution are generalized Gamma convolutions, answering to a recent question of L. Bondesson.Lire moins >
Lire la suite >We show that all negative powers B_{a,b}^-{s} of the Beta distribution are infinitely divisible. The case b<1 follows by complete monotonicity, the case b > 1, s > 1 by hyperbolically complete monotonicity and the case b > 1, s < 1 by a Lévy perpetuity argument involving the hypergeometric series. We also observe that B_{a,b}^{-s} is self-decomposable whenever 2a + b + s + bs > 1, and that it is not always a generalized Gamma convolution. On the other hand, we prove that all negative powers of the Gamma distribution are generalized Gamma convolutions, answering to a recent question of L. Bondesson.Lire moins >
Langue :
Anglais
Collections :
Source :
Date de dépôt :
2025-01-22T07:14:19Z
Fichiers
- document
- Accès libre
- Accéder au document
- Beta.pdf
- Accès libre
- Accéder au document
- 1405.4176
- Accès libre
- Accéder au document