Vapour Recognition Based on Deep-Convolutional ...
Type de document :
Communication dans un congrès avec actes
URL permanente :
Titre :
Vapour Recognition Based on Deep-Convolutional Neural Network: Portable Impedance Analyzer
Auteur(s) :
Vercoutere, E. [Auteur]
Institut Catholique d'Arts et Métiers [ICAM]
Kenne, S. [Auteur]
Institut Catholique d'Arts et Métiers [ICAM]
Morchain, C. [Auteur]
Institut Catholique d'Arts et Métiers [ICAM]
Pecqueur, Sebastien [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hafsi, Bilel [Auteur]
Institut Catholique d'Arts et Métiers [ICAM]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut Catholique d'Arts et Métiers [ICAM]
Kenne, S. [Auteur]
Institut Catholique d'Arts et Métiers [ICAM]
Morchain, C. [Auteur]
Institut Catholique d'Arts et Métiers [ICAM]
Pecqueur, Sebastien [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hafsi, Bilel [Auteur]
Institut Catholique d'Arts et Métiers [ICAM]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
2024 IEEE SENSORS
Ville :
Kobe
Pays :
Japon
Date de début de la manifestation scientifique :
2024-10-20
Éditeur :
IEEE
Mot(s)-clé(s) en anglais :
Polymer Sensors
Impedance Measurements
Environmental Monitoring
E-Nose
Deep Neural Network
Impedance Measurements
Environmental Monitoring
E-Nose
Deep Neural Network
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Gas detection technologies are essential tools in maintaining safety and environmental standards across various applications. Through advanced sensors and analytical techniques, these systems aim to quickly detect and ...
Lire la suite >Gas detection technologies are essential tools in maintaining safety and environmental standards across various applications. Through advanced sensors and analytical techniques, these systems aim to quickly detect and classify molecular content in an environment, providing valuable insights for early warning and effective response to incidents. In this work, we present the development of miniaturized, multiplexed, and connected electronic nose (e-nose) based on impedance spectroscopy technology. Our platform has been tested and optimized to process electrical responses of 15 conductimetric cells, each cell is tuned using a drop-casted conducting polymer poly(3-hexylthiophene) and 14 different triflate salts. The recognition of various solvents vapor (acetone, methanol, isopropanol, water, ethanol and blends of the last two at various concentrations) relies on a Deep-Convolutional Neural Network based on a back propagation algorithm with two hidden layers of 64 and 32 neurons respectively. The achieved experimental results show an effective classification for the e-nose data to discriminate the alcoholic blends by type and composition, with high classification accuracy (∼96%).Lire moins >
Lire la suite >Gas detection technologies are essential tools in maintaining safety and environmental standards across various applications. Through advanced sensors and analytical techniques, these systems aim to quickly detect and classify molecular content in an environment, providing valuable insights for early warning and effective response to incidents. In this work, we present the development of miniaturized, multiplexed, and connected electronic nose (e-nose) based on impedance spectroscopy technology. Our platform has been tested and optimized to process electrical responses of 15 conductimetric cells, each cell is tuned using a drop-casted conducting polymer poly(3-hexylthiophene) and 14 different triflate salts. The recognition of various solvents vapor (acetone, methanol, isopropanol, water, ethanol and blends of the last two at various concentrations) relies on a Deep-Convolutional Neural Network based on a back propagation algorithm with two hidden layers of 64 and 32 neurons respectively. The achieved experimental results show an effective classification for the e-nose data to discriminate the alcoholic blends by type and composition, with high classification accuracy (∼96%).Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Date de dépôt :
2025-01-23T09:17:24Z