Anisotropic a posteriori error estimation ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Anisotropic a posteriori error estimation for the mixed discontinuous Galerkin approximation of the Stokes problem
Auteur(s) :
Creusé, Emmanuel [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Nicaise, Serge [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Nicaise, Serge [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
Titre de la revue :
Numerical Methods for Partial Differential Equations
Éditeur :
Wiley
Date de publication :
2006
ISSN :
0749-159X
Mot(s)-clé(s) en anglais :
DG method
Error estimator
Anisotropic solution
Stretched elements
Stokes problem
Error estimator
Anisotropic solution
Stretched elements
Stokes problem
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
The paper presents a posteriori error estimates for the mixed discontinuous Galerkin approximation of the stationary Stokes problem. We consider anisotropic finite element discretizations, i.e. elements with very large ...
Lire la suite >The paper presents a posteriori error estimates for the mixed discontinuous Galerkin approximation of the stationary Stokes problem. We consider anisotropic finite element discretizations, i.e. elements with very large aspect ratio. Our analysis covers two- and three-dimensional domains. Lower and upper error bounds are proved with minimal assumptions on the meshes. The lower error bound is uniform with respect to the mesh anisotropy. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimator.Lire moins >
Lire la suite >The paper presents a posteriori error estimates for the mixed discontinuous Galerkin approximation of the stationary Stokes problem. We consider anisotropic finite element discretizations, i.e. elements with very large aspect ratio. Our analysis covers two- and three-dimensional domains. Lower and upper error bounds are proved with minimal assumptions on the meshes. The lower error bound is uniform with respect to the mesh anisotropy. The upper error bound depends on a proper alignment of the anisotropy of the mesh which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimator.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- creuse_nicaise06b.pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document