Discrete compactness for a discontinuous ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system
Auteur(s) :
Creusé, Emmanuel [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Nicaise, Serge [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Nicaise, Serge [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
Titre de la revue :
ESAIM: Mathematical Modelling and Numerical Analysis
Pagination :
413-430
Éditeur :
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Date de publication :
2006
ISSN :
2822-7840
Mot(s)-clé(s) en anglais :
DG method
Maxwell’s system
discrete compactness
eigenvalue approximation
Maxwell’s system
discrete compactness
eigenvalue approximation
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained ...
Lire la suite >In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.Lire moins >
Lire la suite >In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- creuse_nicaise06.pdf
- Accès libre
- Accéder au document
- m2an0553.pdf
- Accès libre
- Accéder au document