Asymmetry tests for Bifurcating Auto-Regressive ...
Document type :
Article dans une revue scientifique: Article original
Title :
Asymmetry tests for Bifurcating Auto-Regressive Processes with missing data
Author(s) :
de Saporta, Benoîte [Auteur]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Gégout-Petit, Anne [Auteur]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Marsalle, Laurence [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Gégout-Petit, Anne [Auteur]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Marsalle, Laurence [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Statistics and Probability Letters
Pages :
1439-1444
Publisher :
Elsevier
Publication date :
2012
ISSN :
0167-7152
HAL domain(s) :
Statistiques [stat]/Théorie [stat.TH]
English abstract : [en]
We present symmetry tests for bifurcating autoregressive processes (BAR) when some data are missing. BAR processes typically model cell division data. Each cell can be of one of two types \emph{odd} or \emph{even}. The ...
Show more >We present symmetry tests for bifurcating autoregressive processes (BAR) when some data are missing. BAR processes typically model cell division data. Each cell can be of one of two types \emph{odd} or \emph{even}. The goal of this paper is to study the possible asymmetry between odd and even cells in a single observed lineage. We first derive asymmetry tests for the lineage itself, modeled by a two-type Galton-Watson process, and then derive tests for the observed BAR process. We present applications on both simulated and real data.Show less >
Show more >We present symmetry tests for bifurcating autoregressive processes (BAR) when some data are missing. BAR processes typically model cell division data. Each cell can be of one of two types \emph{odd} or \emph{even}. The goal of this paper is to study the possible asymmetry between odd and even cells in a single observed lineage. We first derive asymmetry tests for the lineage itself, modeled by a two-type Galton-Watson process, and then derive tests for the observed BAR process. We present applications on both simulated and real data.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- 1112.3745
- Open access
- Access the document