A priori estimates for 3D incompressible ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
A priori estimates for 3D incompressible current-vortex sheets
Auteur(s) :
Coulombel, Jean-François [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Morando, Alessandro [Auteur]
Dipartimento di Matematica [Universita di Brescia]
Secchi, Paolo [Auteur]
Dipartimento di Matematica [Universita di Brescia]
Trebeschi, Paola [Auteur]
Dipartimento di Matematica [Universita di Brescia]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Morando, Alessandro [Auteur]
Dipartimento di Matematica [Universita di Brescia]
Secchi, Paolo [Auteur]
Dipartimento di Matematica [Universita di Brescia]
Trebeschi, Paola [Auteur]
Dipartimento di Matematica [Universita di Brescia]
Titre de la revue :
Communications in Mathematical Physics
Pagination :
247-275
Éditeur :
Springer Verlag
Date de publication :
2012-12-31
ISSN :
0010-3616
Mot(s)-clé(s) en anglais :
Magneto-hydrodynamics
incompressible fluids
current-vortex sheets
free boundary
stability
incompressible fluids
current-vortex sheets
free boundary
stability
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface ...
Lire la suite >We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.Lire moins >
Lire la suite >We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CMST.pdf
- Accès libre
- Accéder au document
- 1102.2763
- Accès libre
- Accéder au document