A wavelet analysis of the Rosenblatt ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter
Auteur(s) :
Bardet, Jean-Marc [Auteur]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Titre de la revue :
Stochastic Analysis and Applications
Pagination :
2331-2362
Éditeur :
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Date de publication :
2010
ISSN :
0736-2994
Mot(s)-clé(s) en anglais :
Multiple Wiener-Itô integral
wavelet analysis
Rosenblatt process
fractional Brownian motion
noncentral limit theorem
self-similarity
parameter estimation
wavelet analysis
Rosenblatt process
fractional Brownian motion
noncentral limit theorem
self-similarity
parameter estimation
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Mathématiques [math]/Probabilités [math.PR]
Statistiques [stat]/Théorie [stat.TH]
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
By using chaos expansion into multiple stochastic integrals, we make a wavelet analysis of two self-similar stochastic processes: the fractional Brownian motion and the Rosenblatt process. We study the asymptotic behavior ...
Lire la suite >By using chaos expansion into multiple stochastic integrals, we make a wavelet analysis of two self-similar stochastic processes: the fractional Brownian motion and the Rosenblatt process. We study the asymptotic behavior of the statistic based on the wavelet coefficients of these processes. Basically, when applied to a non-Gaussian process (such as the Rosenblatt process) this statistic satisfies a non-central limit theorem even when we increase the number of vanishing moments of the wavelet function. We apply our limit theorems to construct estimators for the self-similarity index and we illustrate our results by simulations.Lire moins >
Lire la suite >By using chaos expansion into multiple stochastic integrals, we make a wavelet analysis of two self-similar stochastic processes: the fractional Brownian motion and the Rosenblatt process. We study the asymptotic behavior of the statistic based on the wavelet coefficients of these processes. Basically, when applied to a non-Gaussian process (such as the Rosenblatt process) this statistic satisfies a non-central limit theorem even when we increase the number of vanishing moments of the wavelet function. We apply our limit theorems to construct estimators for the self-similarity index and we illustrate our results by simulations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T10:57:18Z
Fichiers
- document
- Accès libre
- Accéder au document
- BardetTudor_3.pdf
- Accès libre
- Accéder au document
- 0811.2664
- Accès libre
- Accéder au document