Analytic holonomicity of real C$^{{\math ...
Type de document :
Pré-publication ou Document de travail
Titre :
Analytic holonomicity of real C$^{{\mathrm{exp}}}$-class distributions
Auteur(s) :
Aizenbud, Avraham [Auteur]
Weizmann Institute of Science [Rehovot, Israël]
Cluckers, Raf [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Raibaut, Michel [Auteur]
Laboratoire de Mathématiques [LAMA]
Servi, Tamara [Auteur]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Weizmann Institute of Science [Rehovot, Israël]
Cluckers, Raf [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Raibaut, Michel [Auteur]
Laboratoire de Mathématiques [LAMA]
Servi, Tamara [Auteur]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Date de publication :
2024-03-29
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We introduce a notion of distributions on $\mathbb{R}^n$, called distributions of C$^{{\mathrm{exp}}}$-class, based on wavelet transforms of distributions and the theory from [6] about C$^{{\mathrm{exp}}}$-class functions. ...
Lire la suite >We introduce a notion of distributions on $\mathbb{R}^n$, called distributions of C$^{{\mathrm{exp}}}$-class, based on wavelet transforms of distributions and the theory from [6] about C$^{{\mathrm{exp}}}$-class functions. We prove that the framework of C$^{{\mathrm{exp}}}$-class distributions is closed under natural operations, like push-forward, pull-back, derivation and antiderivation, and, in the tempered case, Fourier transforms. Our main result is the (real analytic) holonomicity of all distributions of C$^{{\mathrm{exp}}}$-class.Lire moins >
Lire la suite >We introduce a notion of distributions on $\mathbb{R}^n$, called distributions of C$^{{\mathrm{exp}}}$-class, based on wavelet transforms of distributions and the theory from [6] about C$^{{\mathrm{exp}}}$-class functions. We prove that the framework of C$^{{\mathrm{exp}}}$-class distributions is closed under natural operations, like push-forward, pull-back, derivation and antiderivation, and, in the tempered case, Fourier transforms. Our main result is the (real analytic) holonomicity of all distributions of C$^{{\mathrm{exp}}}$-class.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- 2403.20167
- Accès libre
- Accéder au document