Convergence and long-time behavior of ...
Type de document :
Pré-publication ou Document de travail
Titre :
Convergence and long-time behavior of finite volumes for a generalized Poisson-Nernst-Planck system with cross-diffusion and size exclusion
Auteur(s) :
Cancès, Clément [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Massimini, Annamaria [Auteur]
MATHematics for MatERIALS [MATHERIALS]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Herda, Maxime [Auteur]

Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Massimini, Annamaria [Auteur]
MATHematics for MatERIALS [MATHERIALS]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Mot(s)-clé(s) en anglais :
Drift-diffusion
Cross-diffusion
Exponential fitting
Free energy decay
Cross-diffusion
Exponential fitting
Free energy decay
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We present a finite volume scheme for modeling the diffusion of charged particles, specifically ions, in constrained geometries using a degenerate Poisson-Nernst-Planck system with size exclusion yielding cross-diffusion. ...
Lire la suite >We present a finite volume scheme for modeling the diffusion of charged particles, specifically ions, in constrained geometries using a degenerate Poisson-Nernst-Planck system with size exclusion yielding cross-diffusion. Our method utilizes a two-point flux approximation and is part of the exponentially fitted scheme framework. The scheme is shown to be thermodynamically consistent, as it ensures the decay of some discrete version of the free energy. Classical numerical analysis results -existence of discrete solution, convergence of the scheme as the grid size and the time step go to 0 -follow. We also investigate the long-time behavior of the scheme, both from a theoretical and numerical point of view. Numerical simulations confirm our findings, but also point out some possibly very slow convergence towards equilibrium of the system under consideration.Lire moins >
Lire la suite >We present a finite volume scheme for modeling the diffusion of charged particles, specifically ions, in constrained geometries using a degenerate Poisson-Nernst-Planck system with size exclusion yielding cross-diffusion. Our method utilizes a two-point flux approximation and is part of the exponentially fitted scheme framework. The scheme is shown to be thermodynamically consistent, as it ensures the decay of some discrete version of the free energy. Classical numerical analysis results -existence of discrete solution, convergence of the scheme as the grid size and the time step go to 0 -follow. We also investigate the long-time behavior of the scheme, both from a theoretical and numerical point of view. Numerical simulations confirm our findings, but also point out some possibly very slow convergence towards equilibrium of the system under consideration.Lire moins >
Langue :
Anglais
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CHM_long.pdf
- Accès libre
- Accéder au document