A note on the α-Sun distribution
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
A note on the α-Sun distribution
Auteur(s) :
Titre de la revue :
Electronic Communications in Probability
Pagination :
1-13
Éditeur :
Institute of Mathematical Statistics (IMS)
Date de publication :
2023-04-08
ISSN :
1083-589X
Mot(s)-clé(s) en anglais :
Generalized gamma convolution
integro-differential equation
multiplicative martingale
perpetuity
subordinator
α−sun random variable
integro-differential equation
multiplicative martingale
perpetuity
subordinator
α−sun random variable
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We investigate the analytical properties of the α-Sun random variable, which arises from the domain of attraction of certain storage models involving a maximum and a sum. In the Fréchet case we show that this random variable ...
Lire la suite >We investigate the analytical properties of the α-Sun random variable, which arises from the domain of attraction of certain storage models involving a maximum and a sum. In the Fréchet case we show that this random variable is infinitely divisible, and we give the exact behaviour of the density at zero. In the Weibull case we give the exact behaviour of the density at infinity, and we show that the behaviour at zero is neither polynomial nor exponential. This answers the open questions in a recent paper by Greenwood and Witte.Lire moins >
Lire la suite >We investigate the analytical properties of the α-Sun random variable, which arises from the domain of attraction of certain storage models involving a maximum and a sum. In the Fréchet case we show that this random variable is infinitely divisible, and we give the exact behaviour of the density at zero. In the Weibull case we give the exact behaviour of the density at infinity, and we show that the behaviour at zero is neither polynomial nor exponential. This answers the open questions in a recent paper by Greenwood and Witte.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2025-01-24T12:21:36Z
Fichiers
- document
- Accès libre
- Accéder au document
- 23-ECP526.pdf
- Accès libre
- Accéder au document
- 2301.09180
- Accès libre
- Accéder au document