• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Paul Painlevé - UMR 8524
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sobolev space estimates for a class of ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/121233
Title :
Sobolev space estimates for a class of bilinear pseudodifferential operators lacking symbolic calculus
Author(s) :
Bernicot, Frederic [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Torres, Rodolfo [Auteur]
Journal title :
Analysis & PDE
Pages :
551-571
Publisher :
Mathematical Sciences Publishers
Publication date :
2011
ISSN :
2157-5045
English keyword(s) :
Bilinear pseudodifferential operators
exotic class
transposes
Littlewood-Paley theory
Sobolev space estimates
HAL domain(s) :
Mathématiques [math]/Analyse classique [math.CA]
English abstract : [en]
The reappearance of a sometimes called exotic behavior for linear and multilinear pseudodifferential operators is investigated. The phenomenon is shown to be present in a recently introduced class of bilinear pseudodifferential ...
Show more >
The reappearance of a sometimes called exotic behavior for linear and multilinear pseudodifferential operators is investigated. The phenomenon is shown to be present in a recently introduced class of bilinear pseudodifferential operators which can be seen as more general variable coefficient counterparts of the bilinear Hilbert transform and other singular bilinear multipliers operators. The unboundedness on product of Lebesgue spaces but the boundedness on spaces of smooth functions (which is the exotic behavior referred to) of such operators is obtained. In addition, by introducing a new way to approximate the product of two functions, estimates on a new paramultiplication are obtained.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
23 pages
Collections :
  • Laboratoire Paul Painlevé - UMR 8524
Source :
Harvested from HAL
Submission date :
2025-01-24T12:28:25Z
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Bernicot-Torres9.pdf
  • Open access
  • Access the document
Thumbnail
  • 1003.6000
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017