Compact composition operators on Bergman-Orlicz ...
Document type :
Pré-publication ou Document de travail
Permalink :
Title :
Compact composition operators on Bergman-Orlicz spaces
Author(s) :
Lefèvre, Pascal [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Li, Daniel [Auteur correspondant]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Li, Daniel [Auteur correspondant]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
English keyword(s) :
Bergman-Orlicz space
Carleson function
Compactness
Composition operator
Hardy-Orlicz space
Nevanlinna counting function
Carleson function
Compactness
Composition operator
Hardy-Orlicz space
Nevanlinna counting function
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
We construct an analytic self-map $\phi$ of the unit disk and an Orlicz function $\Psi$ for which the composition operator of symbol $\phi$ is compact on the Hardy-Orlicz space $H^\Psi$, but not compact on the Bergman-Orlicz ...
Show more >We construct an analytic self-map $\phi$ of the unit disk and an Orlicz function $\Psi$ for which the composition operator of symbol $\phi$ is compact on the Hardy-Orlicz space $H^\Psi$, but not compact on the Bergman-Orlicz space ${\mathfrak B}^\Psi$. For that, we first prove a Carleson embedding theorem, and then characterize the compactness of composition operators on Bergman-Orlicz spaces, in terms of Carleson function (of order $2$). We show that this Carleson function is equivalent to the Nevanlinna counting function of order $2$.Show less >
Show more >We construct an analytic self-map $\phi$ of the unit disk and an Orlicz function $\Psi$ for which the composition operator of symbol $\phi$ is compact on the Hardy-Orlicz space $H^\Psi$, but not compact on the Bergman-Orlicz space ${\mathfrak B}^\Psi$. For that, we first prove a Carleson embedding theorem, and then characterize the compactness of composition operators on Bergman-Orlicz spaces, in terms of Carleson function (of order $2$). We show that this Carleson function is equivalent to the Nevanlinna counting function of order $2$.Show less >
Language :
Anglais
Comment :
32 pages
Collections :
Source :
Submission date :
2025-01-24T12:52:07Z
Files
- document
- Open access
- Access the document
- bergman_var2.pdf
- Open access
- Access the document
- 0910.5368
- Open access
- Access the document