EVENTUAL IDEAL PROPERTIES OF THE ...
Document type :
Pré-publication ou Document de travail
Permalink :
Title :
EVENTUAL IDEAL PROPERTIES OF THE RIEMANN-LIOUVILLE ANALYTIC SEMIGROUP
Author(s) :
Alam, Ihab [Auteur]
Chalendar, Isabelle [Auteur]
Université Paris-Est Marne-la-Vallée [UPEM]
Chami, Fida [Auteur]
Fricain, Emmanuel [Auteur]
Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Lefèvre, Pascal [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Chalendar, Isabelle [Auteur]
Université Paris-Est Marne-la-Vallée [UPEM]
Chami, Fida [Auteur]
Fricain, Emmanuel [Auteur]

Université de Lille
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Lefèvre, Pascal [Auteur]
Laboratoire de Mathématiques de Lens [LML]
English keyword(s) :
Volterra operator
Riemann-Liouville semigroup
fractional integration
nuclear operators
Schatten class
Riemann-Liouville semigroup
fractional integration
nuclear operators
Schatten class
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
In this paper, we revisit the Riemann–Liouville analytic semigroup. In particular, we completely characterize the membership to the Schatten class $S^r$ on $L^2(0,1)$, as well as the membership to the class of nuclear ...
Show more >In this paper, we revisit the Riemann–Liouville analytic semigroup. In particular, we completely characterize the membership to the Schatten class $S^r$ on $L^2(0,1)$, as well as the membership to the class of nuclear operators on $L^p(0,1)$, $p\geq 1$, and the membership to the ideal of absolutely $r$-summing operators for any $r\geq 1$.Show less >
Show more >In this paper, we revisit the Riemann–Liouville analytic semigroup. In particular, we completely characterize the membership to the Schatten class $S^r$ on $L^2(0,1)$, as well as the membership to the class of nuclear operators on $L^p(0,1)$, $p\geq 1$, and the membership to the ideal of absolutely $r$-summing operators for any $r\geq 1$.Show less >
Language :
Anglais
Collections :
Source :
Submission date :
2025-01-24T13:38:52Z
Files
- document
- Open access
- Access the document
- SGVolterra_version-soumise.pdf
- Open access
- Access the document