The spatial average of solutions to SPDEs ...
Type de document :
Pré-publication ou Document de travail
URL permanente :
Titre :
The spatial average of solutions to SPDEs is asymptotically independent of the solution
Auteur(s) :
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Zurcher, Jérémy [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Zurcher, Jérémy [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Date de publication :
2024-04-17
Mot(s)-clé(s) en anglais :
2010 AMS Classification Numbers: 60H15
60H07
60G15
60F05 stochastic heat equation
stochastic wave equation
Stein's method
Malliavin Calculus
60H07
60G15
60F05 stochastic heat equation
stochastic wave equation
Stein's method
Malliavin Calculus
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
Let $ \left( u(t,x), t\geq 0, x\in \mathbb{R} ^{d}\right)$ be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial ...
Lire la suite >Let $ \left( u(t,x), t\geq 0, x\in \mathbb{R} ^{d}\right)$ be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial variable. We consider the spatial average of the solution $F_{R}(t)= \frac{1}{ \sigma _{R}}\int_{ \vert x\vert \leq R} \left( u(t,x)-1\right) dx, $where $\sigma ^{2}_{R}= \E \left( \int_{ \vert x\vert \leq R} \left( u(t,x)-1\right) dx\right) ^{2}.$ It is known that, when $R$ goes to infinity, $F_{R}(t)$ converges in law to a standard Gaussian random variable $Z$. We show that the spatial average $F_{R}(t)$ is actually asymptotic independent by the solution itself, at any time and at any point in space, meaning that the random vector $(F_{R}(t), u(t, x_{0}))$ converges in distribution, as $R\to \infty$, to $(Z, u(t, x_{0}))$, where $Z$ is a standard normal random variable independent of $u(t, x_{0})$. By using the Stein-Malliavin calculus, we also obtain the rate of convergence, under the Wasserstein distance, for this limit theorem.Lire moins >
Lire la suite >Let $ \left( u(t,x), t\geq 0, x\in \mathbb{R} ^{d}\right)$ be the solution to the stochastic heat or wave equation driven by a Gaussian noise which is white in time and white or correlated with respect to the spatial variable. We consider the spatial average of the solution $F_{R}(t)= \frac{1}{ \sigma _{R}}\int_{ \vert x\vert \leq R} \left( u(t,x)-1\right) dx, $where $\sigma ^{2}_{R}= \E \left( \int_{ \vert x\vert \leq R} \left( u(t,x)-1\right) dx\right) ^{2}.$ It is known that, when $R$ goes to infinity, $F_{R}(t)$ converges in law to a standard Gaussian random variable $Z$. We show that the spatial average $F_{R}(t)$ is actually asymptotic independent by the solution itself, at any time and at any point in space, meaning that the random vector $(F_{R}(t), u(t, x_{0}))$ converges in distribution, as $R\to \infty$, to $(Z, u(t, x_{0}))$, where $Z$ is a standard normal random variable independent of $u(t, x_{0})$. By using the Stein-Malliavin calculus, we also obtain the rate of convergence, under the Wasserstein distance, for this limit theorem.Lire moins >
Langue :
Anglais
Collections :
Source :
Date de dépôt :
2025-01-24T13:39:29Z
Fichiers
- document
- Accès libre
- Accéder au document
- spatial-average-FIN.pdf
- Accès libre
- Accéder au document
- 2404.11147
- Accès libre
- Accéder au document