Linear dynamics of an operator associated ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Linear dynamics of an operator associated to the Collatz map
Auteur(s) :
Titre de la revue :
Proceedings of the American Mathematical Society
Éditeur :
American Mathematical Society
Date de publication :
2024-01-11
ISSN :
0002-9939
Mot(s)-clé(s) en anglais :
Frequent Hypercyclicity
Ergodicity
Collatz conjecture
Hypercyclicity
Chaotic operators
Ergodicity
Collatz conjecture
Hypercyclicity
Chaotic operators
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
In this paper, we study the dynamics of an operator T \mathcal T naturally associated to the so-called Collatz map , which maps an integer n ≥ 0 n \geq 0 to n / 2 n / 2 if n n is even and 3 n + 1 3n + 1 if n n is odd. This ...
Lire la suite >In this paper, we study the dynamics of an operator T \mathcal T naturally associated to the so-called Collatz map , which maps an integer n ≥ 0 n \geq 0 to n / 2 n / 2 if n n is even and 3 n + 1 3n + 1 if n n is odd. This operator T \mathcal T is defined on certain weighted Bergman spaces B ω 2 \mathcal B ^2 _\omega of analytic functions on the unit disk. Building on previous work of Neklyudov, we show that T \mathcal T is hypercyclic on B ω 2 \mathcal B ^2 _\omega , independently of whether the Collatz Conjecture holds true or not. Under some assumptions on the weight ω \omega , we show that T \mathcal T is actually ergodic with respect to a Gaussian measure with full support, and thus frequently hypercyclic and chaotic.Lire moins >
Lire la suite >In this paper, we study the dynamics of an operator T \mathcal T naturally associated to the so-called Collatz map , which maps an integer n ≥ 0 n \geq 0 to n / 2 n / 2 if n n is even and 3 n + 1 3n + 1 if n n is odd. This operator T \mathcal T is defined on certain weighted Bergman spaces B ω 2 \mathcal B ^2 _\omega of analytic functions on the unit disk. Building on previous work of Neklyudov, we show that T \mathcal T is hypercyclic on B ω 2 \mathcal B ^2 _\omega , independently of whether the Collatz Conjecture holds true or not. Under some assumptions on the weight ω \omega , we show that T \mathcal T is actually ergodic with respect to a Gaussian measure with full support, and thus frequently hypercyclic and chaotic.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Date de dépôt :
2025-01-24T13:56:14Z
Fichiers
- document
- Accès libre
- Accéder au document
- HAL_Linear-dynamics-of-an-operator-associated-to-the-Collatz-map.pdf
- Accès libre
- Accéder au document